MATH 603: HOMEWORK \#1

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M. FRIDAY, JAN. 27, 2017

1. P.I.D.'s, Euclidean domains

Suppose R is a Noetherian integral domain with fraction field L.

1. Define an equivalence relation on the set of non-zero finitely generated R-submodules of L in the following way. If M and M^{\prime} are two such modules, say $M \cong M^{\prime}$ if and only $M=\lambda \cdot M^{\prime}$ for some $\lambda \in L^{*}=L-\{0\}$. Let $[M]$ be the equivalence class of M, and let $C l(R)$ be the set of all such equivalence classes. Show that $C l(R)$ has one element if and only if R is a P.I.D.
2. Suppose $n \geq 1$. Define two non-zero n-vectors $c=\left(c_{1}, \cdots, c_{n}\right)$ and $d=\left(d_{1}, \cdots, d_{n}\right)$ in L^{n} to be equivalent if $\lambda \cdot c=d$ for some $\lambda \in L^{*}=L-\{0\}$. Write ($c_{1}: \cdots: c_{n}$) for the equivalence class of c. The set of all such $\left(c_{1}: \cdots: c_{n}\right)$ is the set $P^{n-1}(L)$ of points of projective $(n-1)$-space over L. The action of $\mathrm{GL}_{n}(L)$ on column vectors gives an action of $\mathrm{GL}_{n}(L)$ on $P^{n-1}(L)$.
a. Show that there is a well defined map $\psi: P^{n-1}(L) \rightarrow C l(R)$ which sends $\left(c_{1}: \cdots: c_{n}\right)$ to $\left[R c_{1}+\cdots+R c_{n}\right]$. Show that this map is surjective if and only if every R-ideal is generated by at most n elements.
b. Show that the left action of the group $\mathrm{GL}_{n}(R)$ on column vectors gives an action of $\mathrm{GL}_{n}(R)$ on $P^{n-1}(L)$. Show that the map ψ in part (a) is constant on the orbits of this action, so that it gives a map $\bar{\psi}: \mathrm{GL}_{n}(R) \backslash P^{n-1}(L) \rightarrow C l(R)$.
3. Suppose R is Euclidean with respect to some norm $N: R \rightarrow \mathbb{Z}_{\geq 0}$. How would you use the Euclidean algorithm to find a matrix $M \in \mathrm{SL}_{2}(R)$ which moves a given point $(a: b) \in P^{2}(L)$ to (1:0)? (Keep in mind that a and b are in L but may not be in R.)
Remarks: Suppose $R=R_{d}$ is one of the quadratic integer rings discussed in class with $d<0$ a square-free integer. Then in fact, $C L\left(r_{d}\right)$ is a finite set, and its order is the class number $h\left(R_{d}\right)$ of R_{d}. The Gauss class number problem discussed in class was to show that there are exactly 9 such d for which this number is 1 . By problem $\# 1$, the latter condition is equivalent to R_{d} being a P.I.D.. The result of Gross and Zagier and Goldfeld gave for the first time an *effective* lower bound for $h\left(R_{d}\right)$ which goes to infinity with $|d|$.

2. An example of torsors

Fix $n=2$ in problem \#2. Suppose that $c=\left(c_{1}, c_{2}\right)$ and $d=\left(d_{1}, d_{2}\right)$ are in $L^{2}-\{0,0\}$ and that $\psi\left(\left(c_{1}: c_{2}\right)\right)=\psi\left(\left(d_{1}: d_{2}\right)\right)$. In view of problem $\# 2(\mathrm{~b})$, it's a natural question whether $\left(c_{1}: c_{2}\right)$ and $\left(d_{1}: d_{2}\right)$ are in the same orbit under the action of $\mathrm{GL}_{2}(R)$, or even under the action of $\mathrm{SL}_{2}(R)$. This problem connects this question to the study of torsors for algebraic groups. Let c^{T} and d^{T} be the column vectors which are the transposes of c and d.
4. Show that after replacing d by a $\lambda \cdot d$ for some $\lambda \in L^{*}$, one can assume $R c_{1}+R c_{2}=R d_{1}+R d_{2}$.
5. Show that there is always a matrix $m \in \mathrm{GL}_{2}(L)$ such that $m c^{T}=d^{T}$. Then show that for each $\alpha \in L^{*}$, there is a matrix $z \in \mathrm{GL}_{2}(L)$ so $\operatorname{det}(z)=\alpha$ and $z c^{T}=c^{T}$. Finally, show that the set $S=\left\{m \in \mathrm{SL}_{2}(L): m c^{T}=d^{T}\right\}$ consists of one orbit under the left multiplication action of the subgroup $H=\left\{\gamma \in \mathrm{SL}_{2}(L): \gamma d^{T}=d^{T}\right\} \subset \mathrm{GL}_{2}(L)$.
6. Prove that H is conjugate in $\mathrm{SL}_{2}(L)$ to the subgroup of upper triangular matrices with 1 down the diagonal. (It is useful to first consider the action of $\mathrm{SL}_{2}(L)$ on $L^{2}-\{(0,0)\}$.)
7. Show that if

$$
m=\left(\begin{array}{ll}
x_{1,1} & x_{1,2} \tag{2.1}\\
x_{2,1} & x_{2,2}
\end{array}\right)
$$

is a matrix of indeterminants, then there is a finite set of polynomials $P \subset L\left[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right]$ such that m defines an element of H if and only if every polynomial in P vanishes at $x=\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right)$. (This shows H is a linear algebraic group.)
8. Show that similarly, there is another finite set of polynomials $P^{\prime} \subset L\left[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right]$ such that m is in S if and only if every polynomial P^{\prime} vanishes at x. (This shows S is a torsor for H, since S consists of one H orbit.)
9. Finally, show that there is a matrix $m \in \mathrm{SL}_{2}(R)$ such that $m c^{T}=d^{T}$ if and only if the polynomials in P^{\prime} vanish at some $x \in R^{4}$. (One then says that the H-torsor S has a point over R.)
10. Prove that if $c=(1,0)=\left(c_{1}, c_{2}\right)$ and $R c_{1}+R c_{2}=R d_{1}+R d_{2}=R$ there is always a matrix $m \in \mathrm{SL}_{2}(R)$ such that $m c^{T}=d^{T}$. Deduce from this that the map $\bar{\psi}: \mathrm{GL}_{2}(R) \backslash P^{n-1}(L) \rightarrow$ $C l(R)$ in problem $\# 2(\mathrm{~b})$ has the property that the inverse image of the class $[R]$ of $C l(R)$ has exactly one element.
Remarks: Problem \#9 illustrates the problem of finding whether or not a torsor for a linear algebraic group has a point over a given ring. We will return later in the semester for some necessary and sufficient conditions for this to be true. This is a very active research area.

