MATH 603: HOMEWORK #1

DUE IN SEBASTIAN MOORE'S MAILBOX BY 4:00 P.M. FRIDAY, JAN. 27, 2017

1. P.I.D.'S, EUCLIDEAN DOMAINS

Suppose R is a Noetherian integral domain with fraction field L.

- 1. Define an equivalence relation on the set of non-zero finitely generated R-submodules of L in the following way. If M and M' are two such modules, say $M \cong M'$ if and only $M = \lambda \cdot M'$ for some $\lambda \in L^* = L \{0\}$. Let [M] be the equivalence class of M, and let Cl(R) be the set of all such equivalence classes. Show that Cl(R) has one element if and only if R is a P.I.D.
- 2. Suppose $n \ge 1$. Define two non-zero *n*-vectors $c = (c_1, \dots, c_n)$ and $d = (d_1, \dots, d_n)$ in L^n to be equivalent if $\lambda \cdot c = d$ for some $\lambda \in L^* = L \{0\}$. Write $(c_1 : \dots : c_n)$ for the equivalence class of c. The set of all such $(c_1 : \dots : c_n)$ is the set $P^{n-1}(L)$ of points of projective (n-1)-space over L. The action of $\operatorname{GL}_n(L)$ on column vectors gives an action of $\operatorname{GL}_n(L)$ on $P^{n-1}(L)$.
 - a. Show that there is a well defined map $\psi: P^{n-1}(L) \to Cl(R)$ which sends $(c_1:\cdots:c_n)$ to $[Rc_1 + \cdots + Rc_n]$. Show that this map is surjective if and only if every *R*-ideal is generated by at most *n* elements.
 - b. Show that the left action of the group $\operatorname{GL}_n(R)$ on column vectors gives an action of $\operatorname{GL}_n(R)$ on $P^{n-1}(L)$. Show that the map ψ in part (a) is constant on the orbits of this action, so that it gives a map $\overline{\psi} : \operatorname{GL}_n(R) \setminus P^{n-1}(L) \to Cl(R)$.
- 3. Suppose R is Euclidean with respect to some norm $N : R \to \mathbb{Z}_{\geq 0}$. How would you use the Euclidean algorithm to find a matrix $M \in \mathrm{SL}_2(R)$ which moves a given point $(a : b) \in P^2(L)$ to (1:0)? (Keep in mind that a and b are in L but may not be in R.)

Remarks: Suppose $R = R_d$ is one of the quadratic integer rings discussed in class with d < 0 a square-free integer. Then in fact, $CL(r_d)$ is a finite set, and its order is the class number $h(R_d)$ of R_d . The Gauss class number problem discussed in class was to show that there are exactly 9 such d for which this number is 1. By problem #1, the latter condition is equivalent to R_d being a P.I.D.. The result of Gross and Zagier and Goldfeld gave for the first time an *effective* lower bound for $h(R_d)$ which goes to infinity with |d|.

2. An example of torsors

Fix n = 2 in problem #2. Suppose that $c = (c_1, c_2)$ and $d = (d_1, d_2)$ are in $L^2 - \{0, 0\}$ and that $\psi((c_1 : c_2)) = \psi((d_1 : d_2))$. In view of problem #2(b), it's a natural question whether $(c_1 : c_2)$ and $(d_1 : d_2)$ are in the same orbit under the action of $\operatorname{GL}_2(R)$, or even under the action of $\operatorname{SL}_2(R)$. This problem connects this question to the study of torsors for algebraic groups. Let c^T and d^T be the column vectors which are the transposes of c and d.

- 4. Show that after replacing d by a $\lambda \cdot d$ for some $\lambda \in L^*$, one can assume $Rc_1 + Rc_2 = Rd_1 + Rd_2$.
- 5. Show that there is always a matrix $m \in \operatorname{GL}_2(L)$ such that $mc^T = d^T$. Then show that for each $\alpha \in L^*$, there is a matrix $z \in \operatorname{GL}_2(L)$ so $\det(z) = \alpha$ and $zc^T = c^T$. Finally, show that the set $S = \{m \in \operatorname{SL}_2(L) : mc^T = d^T\}$ consists of one orbit under the left multiplication action of the subgroup $H = \{\gamma \in \operatorname{SL}_2(L) : \gamma d^T = d^T\} \subset \operatorname{GL}_2(L)$.

- 6. Prove that H is conjugate in $SL_2(L)$ to the subgroup of upper triangular matrices with 1 down the diagonal. (It is useful to first consider the action of $SL_2(L)$ on $L^2 \{(0,0)\}$.)
- 7. Show that if

$$m = \left(\begin{array}{cc} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{array}\right)$$

is a matrix of indeterminants, then there is a finite set of polynomials $P \subset L[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]$ such that *m* defines an element of *H* if and only if every polynomial in *P* vanishes at $x = (x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2})$. (This shows *H* is a linear algebraic group.)

- 8. Show that similarly, there is another finite set of polynomials $P' \subset L[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]$ such that m is in S if and only if every polynomial P' vanishes at x. (This shows S is a torsor for H, since S consists of one H orbit.)
- 9. Finally, show that there is a matrix $m \in SL_2(R)$ such that $mc^T = d^T$ if and only if the polynomials in P' vanish at some $x \in R^4$. (One then says that the *H*-torsor *S* has a point over *R*.)
- 10. Prove that if $c = (1, 0) = (c_1, c_2)$ and $Rc_1 + Rc_2 = Rd_1 + Rd_2 = R$ there is always a matrix $m \in SL_2(R)$ such that $mc^T = d^T$. Deduce from this that the map $\overline{\psi} : GL_2(R) \setminus P^{n-1}(L) \to Cl(R)$ in problem #2(b) has the property that the inverse image of the class [R] of Cl(R) has exactly one element.

Remarks: Problem #9 illustrates the problem of finding whether or not a torsor for a linear algebraic group has a point over a given ring. We will return later in the semester for some necessary and sufficient conditions for this to be true. This is a very active research area.

(2.1)