MATH 240: HOMEWORK \#3

DUE IN FLORA'S MAILBOX BY NOON ON NOV. 8.

1. The impact of an event on three candidates

Suppose we label three presidential candidates T, B and W. The level of enthusiasm by any one person for these candidates at a given time is a column vector

$$
x=\left(\begin{array}{c}
x_{T} \\
x_{B} \\
x_{W}
\end{array}\right)
$$

of real numbers.

1. An event in the news has the effect of changing each x to some new vector $T(x)$. This defines a function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Describe in words the significance of saying that $T(\underline{0})=\underline{0}$ when $\underline{0}$ is the zero vector. Describe in words the significance of saying that $T(r x)=r T(x)$ for all $r \in \mathbb{R}$ and $x \in \mathbb{R}^{3}$.
2. Suppose x and x^{\prime} represent the approval vectors associated to two people before the event occurs. Explain why we can view $\left(x+x^{\prime}\right) / 2$ as the average approval levels of these two people before the event. How would you interpret in words the condition that

$$
\begin{equation*}
T\left(\left(x+x^{\prime}\right) / 2\right)=\left(T(x)+T\left(x^{\prime}\right)\right) / 2 \tag{1.1}
\end{equation*}
$$

given that $T(x)$ and $T\left(x^{\prime}\right)$ describe the approval levels of the two people after the event?
3. Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is continuous, $T(\underline{0})=\underline{0}$ and that (1.1) holds for all $x, x^{\prime} \in \mathbb{R}^{3}$. Show that T must be linear. How would you explain in words the significance of this fact, given your answer to problems \# 1 and \#2?

Hints: Use these steps to show T is linear.
a. Show

$$
\begin{equation*}
T(n x)=n T(x) \tag{1.2}
\end{equation*}
$$

for all x and all integers $n \geq 0$ using induction on n.
Details: Recall that to prove something by induction, you first check the statement for all n in the range $0 \leq n \leq N$ for some integer N. You then complete the induction by show for $n \geq N$ that if the statement is true for n, it is true for $n+1$. In this case first check (1.2) for $n=0$ and $n=1$. Then use

$$
\begin{equation*}
(n+1) x=n x+x=(n(2 x)+(2 x)) / 2 . \tag{1.3}
\end{equation*}
$$

with $n=0$ to show $T(2 x)=2 T(x)$, i.e. that (1.2) holds when $n=2$. Then use this and (1.3) to show that if (1.3) is true for some $n \geq 2$ it is also true for $n+1$.
b. Show $T(-x)=-T(x)$ using $(x+(-x)) / 2=\underline{0}$, and conclude that $T(n x)=n T(x)$ for all x and all integers n.
c. Show $T(r x)=r T(x)$ for all rationals $r=n / m$ and all x, using that $r x=n(x / m)$ and $x=m \cdot(x / m)$.
d. Use the continuity of T to show that $T(r x)=r T(x)$ for all real numbers r. Show finally that this and (1.1) are enough to prove that T is linear.
4. From now on we suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is linear. Let the matrix of T be

$$
M=\left(\begin{array}{ccc}
a_{T, T} & a_{T, B} & a_{T, W} \\
a_{B, T} & a_{B, B} & a_{B, W} \\
a_{W, T} & a_{W, B} & a_{W, W}
\end{array}\right)
$$

where the entries are real numbers. Explain why $a_{T, B}$ is the partial derivative with respect to enthusiam for candidate B of the change the event brings about in enthusiasm for candidate T. (The other entries have similar interpretations, but you do not have to write these down.)
5. Let $p_{M}(t)=\operatorname{det}\left(t I_{3}-M\right)$ be the characteristic polynomial of M, where I_{3} is the three by three identity matrix and t is a variable. Using that M has real entries, show that $p_{M}(t)$ must either have all real roots or one real root r_{1} and a pair $\{\sigma, \bar{\sigma}\}$ of complex conjugate non-real roots.
6. Suppose that

$$
x=\left(\begin{array}{l}
x_{T} \\
x_{B} \\
x_{W}
\end{array}\right)
$$

is the enthusiasm vector of a particular person. Describe in words the significance of x being eigenvector for T with real eigenvalue λ. What does this say about what happens to the views of x after the event that is associated to T ? What is the significance of the sign of λ ? Must x have real entries?
7. Suppose M has three distinct eigenvalues r_{1}, r_{2} and r_{3}. Some of these eigenvalues could be non-real complex numbers. We've shown in class that then there is a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{C}^{3} considering of of eigenvectors for M. Using your answers to problems \#5 and \#6, describe conditions on r_{1}, r_{2} and r_{3} which are equivalent to there being a basis of eigenvectors of M which is contained in \mathbb{R}^{3}.
8. Suppose now that $p_{M}(t)$ has a real eigenvector r_{1} and two non-real complex conjugate eigenvalues $\{\sigma, \bar{\sigma}\}$. Write $\sigma=r e^{i \theta}=r(\cos (\theta)+i \sin (\theta))$ for some real number $r>0$ and some real number θ. Show that there is a basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ for \mathbb{R}^{3} such that the matrix of T relative to B has the form

$$
[T]_{B}^{B}=\left(\begin{array}{ccc}
r_{1} & 0 & 0 \tag{1.4}\\
0 & r \cos (\theta) & r \sin (\theta) \\
0 & -r \sin (\theta) & r \cos (\theta)
\end{array}\right)
$$

Describe in words what the event T does to voters with preferences b_{1}, b_{2} and b_{3} when $r_{1}=r=1$ and $\theta=-\pi / 2$.

Details: Suppose v_{2} is a vector in \mathbb{C}^{3} which is an eigenvector for T with eigenvalue σ. Write

$$
v_{2}=x_{2}+i x_{3}
$$

for some real vectors $x_{2}, x_{3} \in \mathbb{R}^{3}$. Use that

$$
T\left(v_{2}\right)=T\left(x_{2}\right)+i T\left(x_{3}\right)=\sigma \cdot v_{2}
$$

to calculate $T\left(x_{2}\right)$ and $T\left(x_{3}\right)$. Then show that if x_{1} is an eigenvector with eigenvalue r_{1}, we can take $B=\left\{x_{1}, x_{2}, x_{3}\right\}$. To check these vectors are independent, you might first show that $x_{2}-i x_{3}$ is an eigenvector with eigenvalue $\bar{\sigma}$ and that $x_{1}, x_{2}+i x_{3}, x_{2}-i x_{3}$ are independent over \mathbb{C}.

2. Extra Credit

Suppose that $n \geq 1$ and that M is an arbitrary $n \times n$ matrix with real entries. Suppose that the characteristic polynomial $p_{M}(t)=\operatorname{det}\left(t I_{n}-M\right)$ has m distinct real roots r_{1}, \ldots, r_{m} and $n-m=2 \ell$ distinct non-real roots $\sigma_{1}, \bar{\sigma}_{1}, \ldots, \sigma_{\ell}, \bar{\sigma}_{\ell}$. Here the non-real roots must occur in complex conjugate pairs because $p_{M}(t)$ has real coefficients. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation represented by M in the standard basis, so that $T(x)=M x$ for all column vectors x of size n. Show that there is a B basis for \mathbb{R}^{n} such that the matrix $M^{\prime}=[T]_{B}^{B}$ of T relative to B has the following form. Write

$$
\sigma_{j}=z_{j} \cdot e^{i \theta_{j}}=z_{j}\left(\cos \left(\theta_{j}\right)+i \sin \left(\theta_{j}\right)\right)
$$

for some real constants $z_{j}>0$ and θ_{j}. Then M^{\prime} is a block matrix which has m one-by-one blocks going down the diagonal, with the numbers r_{1}, \ldots, r_{m} in these blocks, followed by ℓ two-by-two blocks going down the diagonal which have the form

$$
\left(\begin{array}{cc}
z_{j} \cos \left(\theta_{j}\right) & z_{j} \sin \left(\theta_{j}\right) \tag{2.5}\\
-z_{j} \sin \left(\theta_{j}\right) & z_{j} \cos \left(\theta_{j}\right)
\end{array}\right)
$$

as j ranges from 1 to ℓ. This generalizes the case $n=3$ dealt with in the previous problems.

