MATH 240: HOMEWORK \#1

TO BE TURNED IN DURING RECITATION ON $9 / 16$ OR $9 / 18$ OR AT THE END OF LECTURE ON $9 / 19$.

I. Linear algebra over $\mathbb{Z} / 2$.

The object of these problems is to get some experience working with linear algebra over $\mathbb{Z} / 2=$ $\{\underline{0}, \underline{1}\}$. Recall that if a is an integer, then \underline{a} means $a \bmod 2$. Thus either a is even and $\underline{a}=\underline{0}$ or a is odd and $\underline{a}=\underline{1}$. One adds and multiplies integers mod 2 by adding and multiplying integers in the usual way and then considering whether the result is even or odd. In other words:

$$
\underline{a}+\underline{b}=\underline{a+b} \quad \text { and } \quad \underline{a} \cdot \underline{b}=\underline{a \cdot b} .
$$

So, for instance, $\underline{1}+\underline{1}=\underline{2}=\underline{0}$.

1. Computations with entries in $\mathbb{Z} / 2$ work the same way as with matrices with entries in \mathbb{R}. Find the reduced row reduced form of the matrix

$$
M^{\prime}=\left(\begin{array}{llll}
\underline{1} & \underline{0} & \underline{1} & \underline{1} \\
\underline{1} & \underline{1} & \underline{0} & \underline{1} \\
\underline{0} & \underline{1} & \underline{1} & \underline{0}
\end{array}\right)
$$

Find the rank of M^{\prime}, which is the number of non-zero rows in the row reduction of M^{\prime}.
2. Use your work in problem $\# 1$ to find all vectors $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ with entries $x_{1}, x_{2}, x_{3} \in \mathbb{Z} / 2$ such that

$$
M x=\left(\begin{array}{l}
\underline{1} \\
\underline{1} \\
\underline{0}
\end{array}\right)
$$

when

$$
M=\left(\begin{array}{lll}
\underline{1} & \underline{0} & \underline{1} \\
\underline{1} & \underline{1} & \underline{0} \\
\underline{0} & \underline{1} & \underline{1}
\end{array}\right)
$$

II. The beginning of error correction

Suppose $n \geq 1$. Let $(\mathbb{Z} / 2)^{n}$ be the set of all column vectors

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

of size n with entries x_{i} in $\mathbb{Z} / 2=\{\underline{0}, \underline{1}\}$. Define an alphabet to be a non-empty subset V of $(\mathbb{Z} / 2)^{n}$ which is closed under addition. Think of V as the set of binary digit strings of length n which are allowed to use as the blocks of a message.

Given two elements x and y of $(\mathbb{Z} / 2)^{n}$, the Hamming distance $\operatorname{dist}(x, y)$ is the number of $\underline{1}$ entries which appear in the vector $x-y$. This is the same as the number of components where x and y have different entries.
3. Show that $\operatorname{dist}(x, y)=\operatorname{dist}(x-y, e)$ when e is the zero vector

$$
e=\left(\begin{array}{c}
\underline{0} \tag{0.1}\\
\vdots \\
\underline{0}
\end{array}\right)
$$

whose entries are all $\underline{0}$. Explain why this shows that

$$
C(V)=\min \{\operatorname{dist}(v, e): e \neq v \in V\}
$$

is the minimal Hamming distance between any two distinct elements of V. (Here we define $C(V)=0$ if V consists of just the element e.)
4. One reason that $C(V)$ is useful is in detecting errors in transmission. Suppose someone tries to send us the message represented by the element v of V. We receive an element v^{\prime} of $(\mathbb{Z} / 2)^{n}$, but some of the digits of v may have been garbled during the transmission, so that v^{\prime} might not be equal to v. Show that if $0<\operatorname{dist}\left(v^{\prime}, e\right)<C(V)$, we will know v^{\prime} cannot be an element of the alphabet V, so that some garbling must have occurred. Explain why it is useful to find V for which $C(V)$ is large.
5. Let $f:(\mathbb{Z} / 2)^{n} \rightarrow(\mathbb{Z} / 2)^{2 n}$ be the function which sends a column vector

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

to the column vector

$$
f(x)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{2 n}
\end{array}\right)
$$

defined by $y_{2 i-1}=y_{2 i}=x_{i}$ for $i=1, \ldots, n$. Thus one gets the entries of $f(x)$ by repeating each entry of x twice in succession.
a. Show that f is additive, in the sense that $f\left(x+x^{\prime}\right)=f(x)+f\left(x^{\prime}\right)$ when $x, x^{\prime} \in(\mathbb{Z} / 2)^{n}$.
b. Conclude that $f(V)=\{f(x): x \in V\}$ is a subset of $(\mathbb{Z} / 2)^{2 n}$ which is closed under addition.
c. Show that if e is the zero vector of length n defined in equation (2.1), $f(e)$ is the zero vector of length $2 n$
d. Show $\operatorname{dist}(f(x), f(e))=2 \cdot \operatorname{dist}(x, e)$ for all x in $(\mathbb{Z} / 2)^{n}$. Use this and problem $\# 3$ to conclude that $C(f(V))=2 C(V)$.

III. Extra Credit

A. Suppose $n \geq 4$. Is there a $2 \times n$ matrix M^{\prime} such that when

$$
V=\left\{x \in(\mathbb{Z} / 2)^{n}: M^{\prime} x=\binom{0}{0}\right\}
$$

one has $C(V)>2$? (Hint: First show that two of the first four columns of M^{\prime} must be equal.)

