
LINEAR PROGRAMMING PROBLEMS

MATH 210 NOTES

1. Statement of linear programming problems

Suppose n,m ≥ 1 are integers and that

A =

 a1,1 . . . a1,m
ai,1 ai,j ai,m
an,1 . . . an,m


is an n×m matrix of positive real constants. Let

b = (b1, . . . , bm) and c = (c1, . . . , cn)

be vectors with positive entries.
The linear programming problem associated to A, b and c is to find all vectors

s = (s1, . . . , sn) ≥ (0, . . . , 0)

such that

sA ≥ b
and for which the real number

f(s) = c1s1 + . . .+ cnsn = scTranspose

is minimized. Here an inequality

(d1, . . . , d`) ≥ (e1, . . . , e`)

between two vectors of the same length means di ≥ ei for all i.

2. Two ways that linear programming problems arise

This section should be omitted from Friday’s lecture - it’s just for background.

2.1. Optimal resource allocation. Suppose s = (s1, . . . , sn) represents the different
amounts of n-different resources which can be used to manufacture m different kinds of
products. The entries of the row vector sA could represent the number of each kind of
product which can be produced using the resources represented by s. So s ≥ (0, . . . , 0)
means that we have to use non-negative amounts of each resources, and the constraint
sA ≥ b sets a lower limit to the number of each kind of product which must be produced.
The function f(s) = c1s1 + . . . + cnsn could represent the cost of using these resources.
So linear programming amounts to finding all optimal choices for the resources to be used
which can be used to reach certain target numbers of each kind of product while minimizing
cost.
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2.2. Two person zero sum games. Another way linear programming arises if from two-
person zero sum games. Suppose that

B =

 b1,1 . . . b1,m
bi,1 bi,j bi,m
bn,1 . . . bn,m


represents the payoff matrix to player 1 in a two person zero sum game in which player
1 has n strategies and player 2 has m strategies. If the players play their options with
probability vectors represented by p = (p1, . . . , pn) and q = (q1, . . . , qm) then the expected
payoff to player 1 is

E(p, q) = pBqTranspose

since the payoff to player 1 for playing option i when player 2 plays option j is bi,j . Player
1 wishes to find a probability vector p∗ = (p1, . . . , pn) so

minqE(p∗, q) = maxp(minqE(p, q))

where p and q range over all probability vectors of the correct size. This is because for each
choice of p, player 2 will look for the q which minimizes the expected payoff to player 1.
So player 1 wants to maximize their worst case outcome.

The main theorem relating p∗ to linear programming is this. Choose δ > 0 so that the
matrix A produced by adding δ to all entries of B has only positive entries. Let

b = (1, . . . , 1) c = (1, . . . , 1)

be vectors of length m and n respectively in the linear programming problem associated
to A. Then the map

s→ s/f(s) = p∗

defines a bijection between solutions to the linear programming problem associated to A, b, c
as above and optimal strategies for player 1 in the game theory problem associated to B.

3. Proof that linear programming problems have solutions

Lemma 3.1. There is at least vector ŝ = (ŝ1, . . . , ŝn) satisfying ŝ ≥ (0, . . . , 0) and ŝA ≥ b.

Proof. Since the entries of A are assumed to be positive, just take ŝ to have sufficiently
large entries. �

Lemma 3.2. The set of T vectors s = (s1, . . . , sn) such that s ≥ (0, . . . , 0), sA ≥ b and
f(s) ≤ f(ŝ) is a closed bounded set.

Proof. The students have taken math 114. So in principle, they should know what open
and closed sets are, but one should review this. I would recommend first defining an open
subset U of Rn to be a set which is either empty or such that all u ∈ U are contained in
some open ball which is entirely contained in U . Then draw a picture, and make the precise
definition of a ball of radius r > 0 around u in Rn. A closed set is then the complement
of an open set. To show T is closed, one needs to show Rn − T = U is closed. Here
u ∈ U = Rn− T if and only if one of the inequalities u ≥ (0, . . . , 0), uA ≥ b or f(u) ≤ f(ŝ)
is not true. The inequality which fails says either that

d1u1 + . . . dnun < e

for some constants di and e (in the event it is one of the inequalities represented by u ≥
(0, . . . , 0) or uA ≥ b) or that

f(u) = c1u1 + · · ·+ cnun > f(ŝ).
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For all u′ = (u′1, . . . , u
′
n) in a sufficiently small all around u, the same inequality will fail. So

U open and T is closed. To show T is bounded, recall that s ∈ T implies s = (s1, . . . , sn) ≥
(0, . . . , 0) and f(s) = c1s1+. . .+cnsn ≤ f(ŝ) where the ci have been assumed to be positive.
This puts an upper and lower bound on each si. �

Now we quote a Theorem from real analysis:

Theorem 3.3. A continuous real valued function on a non-empty closed bounded subset
of Rn assumes its minimum value on the set.

Here one may need to remind people what a continuous function is, and that linear
functions are continuous.

Now one completes the proof of the existences of solutions to linear programming prob-
lems by saying that the solutions s are the elements of the non-empty closed bounded set
T where f(s) takes on its minimum value.

4. The vertex method for solving linear programming problems

There are n+m linear inequalities which define a linear progamming problem are con-
tained in the requirements that

s = (s1, . . . , sn) ≥ (0, . . . , 0)

and sA ≥ b = (b1, . . . , bm).

These can be written in the form

T1 : s1 ≥ 0

T2 : s2 ≥ 0

· · ·
Tn : sn ≥ 0

Tn+1 : s1a1,1, + s2a2,1 + · · · snan,1 ≥ b1
· · ·

Tn+m : s1a1,m, + s2a2,m + · · · snan,m ≥ bm
Write the qth of these inequalities as

Tq : hq(s) ≥ dq
where hq(s) is a linear function of s and dq is a real number.

Definition 4.1. For s = (s1, . . . , sn) ∈ Rn let T (s) be the set of all the inequalities Tq
which hold with equality at s. A point s is a vertex of the linear programming problem if

1. s is the unique point in Rn where the inequalities in T (s) hold with equality, and
2. All of the n+m inequalities defining the linear programming problem hold at s.

Let V be the set of all vertices. Define the subset O of optimal vertices to be

O = {v ∈ V : f(v) ≤ f(v′) for all v′ ∈ V}
where f(s) = c1s1 + · · ·+ cnsn is the function to be minimized.

Definition 4.2. Suppose C = {c(1), . . . , c(`)} is a non-empty set of vectors in Rn. The
span Span(C) of C is defined to be the set of all linear combinations

r1c(1) + · · · r`c(`)
for which r1, . . . , r` ∈ R, ri ≥ 0 for all i and r1 + · · ·+ r` = 1.
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We will give a proof of the following result.

Theorem 4.3. The set O of optimal vertices is non-empty, and the set S of all solutions
s of the linear programming is the span Span(O) of O.

Lemma 4.4. Suppose s ∈ S is not a vertex. Then there are points s′, s′′ ∈ S such that
s lies on the line segment from s′ to s′′ and T (s) is a proper subset of each of T (s′) and
T (s′′).

Proof. By the definition of vertices, s cannot be the unique point in Rn at which the
inequalities in T (s) hold with equality. Therefore there is a point s̃ ∈ Rn such that s̃ 6= s
and T (s) ⊂ T (s̃). For q = 1, . . . , n+m, define

Wq = {t ∈ R : hq(s+ t(s̃− s)) ≥ dq}.

Notice that 0 ∈Wq for all q, because all of the inequalities hold at s.
Since

hq(s+ t(s̃− s)) = hq(s) + thq(s̃− s) and h(s) ≥ dq
we see that either hq(s̃ − s) = 0 and Wq = R or hq(s̃ − s) 6= 0 and Wq is a closed, half
infinite closed interval of the form [rq,∞) of (−∞, rq] for some real number rq.

If Tq 6∈ T (s), then the inequality hq(s) ≥ dq holds with strict inequality, i.e.

hq(s) > dq.

In this case, we will have

hq(s+ t(s̃− s)) = hq(s) + thq(s̃− s) ≥ dq
for all t is a small open interval which contains 0.

If Tq ∈ T (s), then the inequalities hq(s) = dq and hq(s̃) = dq hold because Tq ∈ T (s) ⊂
T (s̃). So

hq(s̃− s) = hq(s̃)− hq(s) = dq − dq = 0

and we conclude that in fact Wq = R.
Therefore

W = ∩n+m
q=1 Wq

contains a small open neighborhood of 0 and is either all of R, a half infinite closed interval
or a bounded closed interval of the form [a, b].

Let us show that the objective function

f(s) = c1s1 + · · · cnsn
is constant on W . By the definition of W , the point s+t(s̃−s) satisfies all of the constraints
of the linear programming problem if t ∈W . We have

f(s+ t(s̃− s)) = f(s) + t(f(s̃)− f(s)).

If f(s̃) 6= f(s), then we can choose t inside a small open neighborhood of 0 contained in W
to make

f(s+ t(s̃− s)) = f(s) + t(f(s̃)− f(s)) < f(s).

However, this contradicts the assumption that s is a solution of the linear programming
problem, since f(s) must be minimal among all points which satisfy the linear equalities
specified by the problem. So in fact f(s̃) = f(s) and f(s+ t(s̃− s)) = f(s) for all t. This
means in particular that f is constant on W .



LINEAR PROGRAMMING PROBLEMS 5

We now claim that W is in fact a bounded interval of the form [a, b] with a < 0 < b. If
not, we have shown that W must contain a half infinite closed interval, so there are values
of t in W which are either arbitrarily positive or arbitrarily negative. Now

0 = f(s− s̃) = c1(s1 − s̃1) + · · · cn(sn − s̃n)

where all of the cj are positive This means that some of the si − s̃i must be positive and
some must be negative. But then once t is sufficiently large in absolute value, some entry
of the vector

s+ t(s̃− s)) = (s1 + t(s̃1 − s1), · · · , sn + t(s̃n − sn))

would have to be negative. However, if t is in W , all the constraints of the linear program-
ming problem are satisfied at the point s + t(s̃ − s), and the first n of these constraints
are that the entries of s+ t(s̃− s) must be non-negative. Hence it is not possible that W
contains t of arbitrarily large absolute value, so W cannot contains a half infinite closed
interval. It must therefore be of the form [a, b] with a < b because it contains an open
neighborhood of 0.

We now define
s′ = s+ a(s̃− s) and s′′ = s+ b(s̃− s)

Clearly s′ and s′′ satisfy all the inequalities of the linear programming problem because
a, b ∈ W . We have f(s′) = f(s′′) = f(s), so s′, s′′ ∈ S. The line segment from s′ to s′′

contains s. We have shown that if Tq ∈ T (s), then Wq = R, so Tq holds with equality at
both s′ and s′′. Thus T (s) ⊂ T (s′) and T (s) ⊂ T (s′′). If T (s) = T (s′), then each inequality
Tq which is not in T (s) holds with strict inequality at s′. This would mean

hq(s+ a(s̃− s)) > dq.

Then the same is true if we replace a by any a′ sufficiently close to a. This would mean
that a small open neighborhood of a is contained in Wq if Tq 6∈ T (s), and clearly such a
neighborhood is contained in Wq = R if Tq ∈ T (s). So we find W = ∩n+m

q=1 Wq contains a

small open neighborhood of a, which is impossible because W is the closed interval [a, b].
This shows T (s′) must be strictly larger than T (s), and similarly T (s′′) must be strictly
larger than T (s). �

Corollary 4.5. If s ∈ S define m(s) to be the maximum of the numbers #T (s′)−#T (s)
as s′ ranges over the elements of S for which T (s) ⊂ T (s′). Then s is in O if and only if
m(s) = 0.

Proof. If s is in O, then it is a vertex, so it must be the unique point of Rn at which the
equalities in T (s) hold with equality. Hence if s′ ∈ Rn and T (s) ⊂ T (s′) then s′ = s. This
shows T (s) = T (s′), so m(s) = 0. Conversely, suppose s ∈ S and m(s) = 0. If s is not a
vertex, then Lemma 4.4 shows m(s) > 0, a contradiction. So s must be a vertex, and since
it is in S, it minimizes f(s). Therefore s must be in the set O of optimal vertices. �

Lemma 4.6. Let S(z) be the the set of all linear combinations

r1s(1) + . . .+ r`s(`)

of elements s(1), . . . , s(`) of S for which m(s(j)) ≤ z and rj ≥ 0 for all j and r1+ · · ·+r` =
1. Then S(0) = Span(O) and S = S(n+m).

Proof. By Corollary 4.5, the elements s ∈ S for which m(s) = 0 are just the elements of
O, so S(0) = Span(O). We have m(s) ≤ n+m for all s ∈ S, so S(n+m) = S. �

Lemma 4.7. For all j ≥ 0 one has S(j) = S(j + 1).
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Proof. Since m(s) ≤ j implies m(s) ≤ j + 1 we certainly have S(j) ⊂ S(j + 1). To prove
S(j + 1) ⊂ S(j) it will be enough to show that every s ∈ S for which m(s) ≤ j + 1 is
on a line segment between two points s′, s′′ ∈ S with m(s′) ≤ j and m(s′′) ≤ j. If s is a
vertex, then it is in O and m(s) = 0 so we can take s′ = s′′ = s. Otherwise, Lemma 4.4
shows that s lies on a line segment between s′, s′′ ∈ S with T (s) a proper subset of both
T (s′) and T (s′′). If m(s′) ≥ j + 1 then there has to be a s′′′ ∈ S with T (s′) ⊂ T (s′′′) and
#T (s′′′)−#T (s′) ≥ j + 1. But then #T (s′′′)−#T (s) ≥ j + 2, contradicting m(s) ≤ j + 1.
So m(s′) ≤ j and similarly m(s′′) ≤ j, so we are done. �

End of the proof of Theorem 4.3

We showed in §3 that there is at least one solution to the linear programming problem,
so S is not empty. By Lemmas 4.7 and 4.6 we have

Span(O) = S(0) = S(1) = · · · = S(n+m) = S
which completes the proof.


