Fun with the Fundamental Group Functor
Directed Reading Program

Presenter: Yi Ling Yu
Mentor: Elijah Gunther
Fall 2020
Homotopy

• A **homotopy** between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function $H : X \times [0, 1] \rightarrow Y$ such that for all $x \in X$
 • $H(x, 0) = f(x)$ and
 • $H(x, 1) = g(x)$.

• Intuition: deforming one function into another

• For Spaces X and Y, having a homotopy from X to Y is an **equivalence relation** on the set of continuous function from X to Y.

Figure 1: Homotopy
Given two topological spaces X and Y, a **homotopy equivalence** between X and Y is a pair of continuous maps $f : X \to Y$ and $g : Y \to X$, such that $g \circ f$ is **homotopic** to the identity map Id_X and $f \circ g$ is **homotopic** to Id_Y.

Intuition: homotopy equivalent spaces are spaces that can be deformed continuously into one another.

Figure 2: Homotopy Equivalence
Path Homotopy

- Path: a **path** in a topological space X is a continuous function $f : [0, 1] \rightarrow X$ with initial point $f(0)$ and terminal point $f(1)$.
- A **homotopy of paths** from f to g is a family $H : [0, 1] \times [0, 1] \rightarrow X$ such that
 - The endpoints $H(0) = x_0$ and $H(1) = x_1$ are independent of t
 - $H(s, 0) = f(s), H(s, 1) = g(s), H(0, t) = x_0,$ and $H(1, t) = x_1$
- Intuition: continuously deforming a path when keeping its endpoints fixed.

Figure 3: Path Homotopy
Given two paths $f, g : [0, 1] \to X$ such that $f(1) = g(0)$, there is a concatenation of path $f \cdot g$ that traverses first f then g

$$(f \cdot g)(s) = \begin{cases}
 f(2s) & 0 \leq s \leq \frac{1}{2} \\
 g(2s - 1) & \frac{1}{2} \leq s \leq 1.
\end{cases}$$

Figure 4: $(f \cdot g)(s)$
Fundamental Group

- **Loops** are paths $f : [0, 1] \to X$ with the same starting and ending point $f(0) = f(1) = x_0$, and their common starting and ending point x_0 is called the **basepoint**.
- The **fundamental group** is the sets of path homotopy classes of the set of all loops, denoted $\pi_1(X, x_0)$.
 - Basepointed topological spaces \to Groups
 - Multiplication is concatenation of paths
 - Basepoint preserving continuous functions \to Group homomorphisms
 - if f and g are homotopic they give the same group homomorphism
Examples of the Fundamental Group

- Example 1: $\pi_1(S^1, x_0) \cong \mathbb{Z}$
 - Clockwise positive, anti-clockwise negative

- Example 2: $\pi_1(D^2, x_0) \cong \{0\}$
 - Intuition: D^2 is homotopy equivalent to a point so they have isomorphic fundamental groups. There's only one function from $[0, 1]$ to a point so $\pi_1(D^2, x_0) \cong \{0\}$
A Category is a collection of objects \(\{X, Y, Z\ldots\} \) and morphisms \(\{f, g, h\ldots\} \) between objects. For a pair of objects \(X \) and \(Y \) we have a collection of morphisms \(\{f, g, h,\ldots\} \) from \(X \) to \(Y \) so that

- Each object has a designated identity morphism \(\text{Id}_X : X \to X \)
- For any pair of morphisms \(f, g \) where \(f : X \to Y \) and \(g : Y \to Z \), we have \(g \circ f : X \to Z \).

A category is also subject to the following two rules:

- For any \(f : X \to Y \), we have \(\text{Id}_Y \circ f = f = f \circ \text{Id}_X \)
- Compositions are associative: \((g \circ h) \circ f = g \circ (h \circ f) \)

Figure 5: The Category [2]
More Examples of Categories

<table>
<thead>
<tr>
<th>Categories</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Sets</td>
<td>Functions</td>
</tr>
<tr>
<td>Vect_R</td>
<td>Vector spaces over R</td>
<td>Linear Functions</td>
</tr>
<tr>
<td>Grp</td>
<td>Groups</td>
<td>Group homomorphisms</td>
</tr>
<tr>
<td>Top</td>
<td>Topological spaces</td>
<td>continuous functions</td>
</tr>
<tr>
<td>Top^*</td>
<td>Base pointed topological space</td>
<td>continuous functions that maps basepoints to each other</td>
</tr>
</tbody>
</table>
Functors

• A **Functor** F is a mapping $F : C \rightarrow D$ that relates two categories C and D such that it associates
 • Each $x \in \text{Obj}(C)$ to a $F(x) \in \text{Obj}(D)$
 • Each $f : x_1 \rightarrow x_2$ in C to a $F(f) : F(x_1) \rightarrow F(x_2)$ in D.

• A Functor also satisfies the following two conditions
 • For each object $x \in \text{Obj}(C)$, $F(\text{Id}_x) = \text{Id}_{F(x)}$
 • For all morphisms $g, f \in C$, $F(g \circ f) = F(g) \circ F(f)$
An Example of functor

• The Fundamental group is a functor.
 • $\text{Top}_* \rightarrow \text{Grp}$
 • Basepoint preserving continuous functions \rightarrow Group homomorphisms
 • two homotopic basepoint preserving continuous functions give the same group homomorphism
Example of using functor in algebraic topology

Want To Show: No retraction from a disc to a circle

• Intuition: one has a 'hole' in it and the other does not, so they must be different in some way.
• Alternative framing: Is there a continuous function $r : D^2 \to S^1$ that fixes the boundary?

Proof:
Let $i : S^1 \to D^2$ be the inclusion. Suppose for contradiction that r exists, such that $r \circ i = Id_{S^1}$.

$$x \in S^1 \to i(x) = x, r(x) = x.$$
So now i, r are morphisms in Top_*, and we can apply the fundamental group.

\[\pi_1(S^1, x) \cong \mathbb{Z} \]
\[\pi_1(D^2, x) \cong \{0\}. \]

These give us

\[\pi_1(i) : \mathbb{Z} \to \{0\} \]
\[\pi_1(r) : \{0\} \to \mathbb{Z}, \]

which is saying

\[id_{\mathbb{Z}} = \pi_1(id_{S^1}) = \pi_1(r \circ i) = \pi_1(r) \circ \pi_1(i) = 0. \]

Contradiction \implies the assumption that r exists is false.
References

- Hatcher’s Algebraic Topology
- Riehl’s Category Theory in Context
groupofthecircle.gif
- https://www.math3ma.com/blog/what-is-a-functor-part-1
Thank you so much for listening!