Electrical Networks and Pólya’s Random Walk Theorem

Ernest Ng
Mentor: Eric Goodman
University of Pennsylvania
ngernest@sas.upenn.edu

Penn Directed Reading Program
10 December 2020
Outline of Project

Project Goals

1. Examine applications of electrical network theory to random walks
2. Classify the behavior of random walks on graphs in different dimensions (≤ 2 vs. ≥ 3)

Project References

Table of Contents

- Motivation: 1-D Random Walk
- Statement of Pólya’s Random Walk Theorem
- Rayleigh’s Monotonicity Law
- Doyle & Snell’s Proof for 2-D by Shorting
- Cutting Method for Higher Dimensions
Motivation: 1-D Random Walk

A random walker starts at node x and has a $\frac{1}{2}$ probability of moving to the left/right.

From this, $p(x) = x/n$. As $n \to \infty$, $p(x) \to 0$, i.e. the random walker must return to the origin.
A random walker starts at node x and has a $\frac{1}{2}$ probability of moving to the left/right.

- Probability of reaching n before 0: $p(x) = \frac{1}{2}p(x-1) + \frac{1}{2}p(x+1)$, $p(0) = 0$, $p(n) = 1$
- Voltage at node x: $v(x) = \frac{1}{2}v(x-1) + \frac{1}{2}v(x+1)$, $v(0) = 0$, $v(n) = 1$

From this, $p(x) = x/n$. As $n \to \infty$, $p(x) \to 0$, i.e. the random walker must return to the origin.
Pólya’s Random Walk Theorem

- A walk is **recurrent** if it is certain that the random walker will return to the origin.
- A walk is **transient** if the escape probability $p_{esc} > 0$, i.e. there is a positive probability that the random walker will never return to the origin.
- (Definitions as in Doyle and Snell, modified from Pólya’s original definitions)

Theorem

Simple random walks on a d-dimensional lattice \mathbb{Z}^d are:

- **Recurrent** for $d = 1, 2$
- **Transient** for $d \geq 3$
Random Walks on \mathbb{Z}^2

- Is it certain that the random walker will return to the origin? *(Recurrent)*
- Or, is there a non-zero probability that the walker will never return to the origin? *(Transient)*
Electrical network on \mathbb{Z}^2

- It can be shown that the escape probability $p_{esc} \propto 1/R_{eff}$, where R_{eff} is the effective resistance from the origin to infinity.

- To determine p_{esc} electrically, compute R_{eff} between the origin and far-away grounded points.
Proof of Pólya’s Theorem for \mathbb{Z}^2: Shorting Nodes

- **Shorting**: Treat certain subsets of nodes as one node
 (electrically: connect nodes with perfectly conducting wires, i.e. set the resistance of certain edges to 0)

- **Rayleigh’s Monotonicity Law**: Shorting nodes only decreases the effective resistance
Proof of Pólya’s Theorem for \mathbb{Z}^2: Shorting Nodes

- **Shorting**: Treat certain subsets of nodes as one node (electrically: connect nodes with perfectly conducting wires, i.e. set the resistance of certain edges to 0)

- **Rayleigh’s Monotonicity Law**: Shorting nodes only decreases the effective resistance

- **Goal**: To prove that random walks on \mathbb{Z}^2 are recurrent, i.e.

 $$p_{esc} \propto \frac{1}{R_{eff}} = 0 \iff R_{eff} = \infty$$

- **Technique**: Short nodes on \mathbb{Z}^2 such that:

 $$R_{eff} \geq R_{shorted} = \infty$$
Proof of Pólya’s Theorem for \mathbb{Z}^2

(Shorted nodes in red)

4 edges

Ω
Proof of Pólya’s Theorem for \mathbb{Z}^2

(Shorted nodes in red)

4 edges

12 edges

$\frac{1}{4} \Omega$

$\frac{1}{12} \Omega$
Proof of Pólya’s Theorem for \mathbb{Z}^2

(Shorted nodes in red)

4 edges
12 edges
20 edges

\[\frac{1}{4} \Omega \quad \frac{1}{12} \Omega \quad \frac{1}{20} \Omega \]
Proof of Pólya’s Theorem for \mathbb{Z}^2

Recalling Rayleigh’s Monotonicity Law, $R_{\text{eff}} \geq R_{\text{shorted}} = \infty \sum_{n=0}^{8n+4} = \infty$

Thus, random walks on \mathbb{Z}^2 are recurrent!
Proof of Pólya’s Theorem for \mathbb{Z}^2

Recalling Rayleigh’s Monotonicity Law,

$$R_{\text{eff}} \geq R_{\text{shorted}} = \sum_{n=0}^{\infty} \frac{1}{8n+4} = \infty$$
Proof of Pólya’s Theorem for \mathbb{Z}^2

Recalling Rayleigh’s Monotonicity Law,

$$R_{\text{eff}} \geq R_{\text{shorted}} = \sum_{n=0}^{\infty} \frac{1}{8n+4} = \infty$$

Thus, random walks on \mathbb{Z}^2 are recurrent!
Proof Idea for Higher Dimensions

- **Cutting**: Removing an edge from the network (increases resistance of edge)

- **Rayleigh’s Monotonicity Law**: Cutting edges only increases the effective resistance

- **Goal**: To prove that random walks on \mathbb{Z}^3 are transient, i.e.

 $$p_{esc} \propto \frac{1}{R_{eff}} > 0 \iff R_{eff} < \infty$$

- **Technique**: Cut edges outside an intricate tree such that:

 $$R_{eff} \leq R_{cut} < \infty$$
Thank you for listening!

Special thanks to
Eric Goodman, Mona Merling
Thomas Brazelton, George Wang