Introduction to Category Theory
Directed Reading Project Presentation

Adam Zheleznyak
Mentor: Andres Mejia

December 10, 2020
My Project: Category Theory and Algebraic Topology

- Books: “Basic Category Theory” by Tom Leinster and “Algebraic Topology” by Allen Hatcher.
- Category theory first began in the 1940s with motivations from algebraic topology.
- Today, category theory finds itself throughout many areas of mathematics, formalizing certain patterns that occur even in seemingly disparate areas.
Categories

A category \mathcal{A} consists of:

- **Objects:** $\text{ob}(\mathcal{A})$
- **Morphisms:** $\mathcal{A}(A, B)$ where $A, B \in \text{ob}(\mathcal{A})$
- **Composition:** Given any $f \in \mathcal{A}(A, B)$ and $g \in \mathcal{A}(B, C)$, we can obtain a unique $g \circ f \in \mathcal{A}(A, C)$
- **Identity:** There is an identity $1_A \in \mathcal{A}(A, A)$ for all $A \in \text{ob}(\mathcal{A})$

Satisfying the following properties:

- **Associativity:** For any $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, and $h \in \mathcal{A}(C, D)$:

$$ (h \circ g) \circ f = h \circ (g \circ f) $$

- **Identity Laws:** For any $f \in \mathcal{A}(A, B)$, $f \circ 1_A = f = 1_B \circ f$
Categories: Examples

- **Set**
 - Objects: Sets
 - Morphisms: Maps

- **Grp**
 - Objects: Groups
 - Morphisms: Group homomorphisms

- **Vect**
 - Objects: Real vector spaces
 - Morphisms: Linear maps

- **Top**
 - Objects: Topological spaces
 - Morphisms: Continuous maps

- **Top**
 - Objects: Topological spaces with a specified basepoint
 - Morphisms: Basepoint-preserving continuous maps
Functors

A map between categories is called a functor. Formally, a functor \(F : \mathcal{A} \rightarrow \mathcal{B} \) consists of:

- A function \(\text{ob}(\mathcal{A}) \rightarrow \text{ob}(\mathcal{B}) \)
- A function \(\mathcal{A}(A, A') \rightarrow \mathcal{B}(F(A), F(A')) \)

Satisfying:

- \(F(f' \circ f) = F(f') \circ F(f) \)
- \(F(1_A) = 1_{F(A)} \)

Examples:

- Forgetful functor: “forgets” the structure of something e.g. \(U : \text{Top} \rightarrow \text{Set} \) where \(U(X) \) is the underlying set of the space \(X \) and \(U(f) \) is the same map as the continuous map \(f \).
- Fundamental group: \(\pi_1 \) is a functor \(\text{Top}^* \rightarrow \text{Grp} \)
Adjoint

Take two functors in opposite directions, \(F : \mathcal{A} \to \mathcal{B} \) and \(G : \mathcal{B} \to \mathcal{A} \). We say that \(F \) is left adjoint to \(G \) and \(G \) is right adjoint to \(F \) when there is a “natural” bijection:

\[
\mathcal{B}(F(A), B) \cong \mathcal{A}(A, G(B))
\]

for any objects \(A \in \text{ob}(\mathcal{A}) \), \(B \in \text{ob}(\mathcal{B}) \).

Essentially, this says that the maps \(F(A) \to B \) are pretty much the same as the maps \(A \to G(B) \).

Example: It turns out that the forgetful functor \(U : \text{Top} \to \text{Set} \) has a left adjoint \(D : \text{Set} \to \text{Top} \), where \(D(S) \) is the set \(S \) with the discrete topology, i.e. all subsets are open.

\(U \) also has a right adjoint \(I : \text{Set} \to \text{Top} \), where \(I(S) \) is the set \(S \) with a trivial topology, i.e. only \(\emptyset \) and \(S \) are open.
Example of a Limit: Product

Given category \mathcal{A} and objects X, Y, a product of X and Y consists of an object $P \in \text{ob}(\mathcal{A})$ and maps

$$
\begin{array}{c}
\text{P} \\
\downarrow \quad \downarrow \\
\text{X} & \quad & \text{Y} \\
\end{array}
$$

such that for all objects A with maps

$$
\begin{array}{c}
\text{A} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{X} & \quad \text{A} & \quad \text{Y} \\
\end{array}
$$

there is a unique map $\bar{f} : A \rightarrow P$ such that this diagram commutes:

$$
\begin{array}{c}
\text{A} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{P} & \quad \text{f_1} & \quad \text{f_2} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{X} & \quad \text{Y} \\
\end{array}
$$
Example of a Limit: Product

Suppose \(A = \textbf{Set} \) (so \(X, Y \) are sets), then a limit is \(P = X \times Y \) with \(p_1, p_2 \) acting as projection maps.

This is because given any \(A \) and \(f_1, f_2 \), there is a unique map that satisfies the diagram above:

\[
\bar{f}(a) = (f_1(a), f_2(a))
\]

The fact that a unique map exists given any \(A \) and \(f_1, f_2 \) is an example of a *universal property*.
Example of a Colimit: Pushout

Say we have $s : Z \rightarrow X$ and $t : Z \rightarrow Y$. A *pushout* is an object P with maps i_1, i_2 such that

$$
\begin{align*}
Z & \xrightarrow{t} Y \\
\downarrow^s & \quad \downarrow^{i_2} \\
X & \xrightarrow{i_1} P
\end{align*}
$$

commutes, and so that given any

$$
\begin{align*}
Z & \xrightarrow{t} Y \\
\downarrow^s & \quad \downarrow^{f_2} \\
X & \xrightarrow{f_1} A
\end{align*}
$$

there is a unique \bar{f} making this diagram commute:
Example of a Colimit: Pushout

Say we are working in \mathbf{Set} and are given sets X, Y, and the inclusion maps $X \cap Y \hookrightarrow X$ and $X \cap Y \hookrightarrow Y$. We get the pushout to be $X \cup Y$ with the following diagram:

$$
\begin{array}{ccc}
X \cap Y & \longrightarrow & Y \\
\downarrow & & \downarrow \\
X & \longrightarrow & X \cup Y
\end{array}
$$

Theorem

If F is a left adjoint of G, then G preserves limits and F preserves colimits.

Recall that D is a left adjoint of U where D is the functor that gives sets the discrete topology. Because pushouts are an example of colimits, we have the same pushout when X, Y, $X \cap Y$, $X \cup Y$ are given the discrete topology.

- For those who know of the Seifert-van Kampen theorem, a similar idea can be used to prove/think about the theorem.
Acknowledgements

Prof. Mona Merling
Thomas Brazelton
George Wang
Andres Mejia