Math 202 - Bonus Problem 1

Due on November 4 (with your regular homework).

This problem is entirely optional, and will not hurt your grade at all (if you don't even try to solve it).

Given a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers, define

$$
b_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k} .
$$

This is the "Cesàro Sum" of a_{n}.
Part 1. Suppose that $b_{n} \rightarrow L$ as $n \rightarrow \infty$ with $L \in \mathbb{R}$. Does $a_{n} \rightarrow L$ as $n \rightarrow \infty$? If so, then prove it. If not, then provide a counter example.

Part 2. Suppose that $\left|b_{n}\right| \leq M<\infty$ for all $n \in \mathbb{N}$. Does this imply that $\left\{a_{n}\right\}_{n \geq 1}$ is bounded? If so, then prove it. If not, then provide a counter example.

