1. Find the area of the surface obtained by rotating the curve about the y-axis.

$$y = \frac{1}{4}x^2 - \frac{1}{2}\ln x, \quad 1 \le x \le 2$$

 $10\pi/3$

2. Find the area of the surface obtained by rotating the curve about the x-axis.

$$x = \frac{1}{3} (y^2 + 2)^{3/2}, \quad 1 \le y \le 3$$

 48π

3. If the infinite curve $y = e^{-x}$, $x \ge 0$, is rotated about the x-axis, find the area of the resulting surface.

$$\pi \left[\sqrt{2} + \ln \left(1 + \sqrt{2} \right) \right]$$

4. Find the area of the surface obtained by rotating the curve about the *x*-axis.

$$y = x^3, \ 0 \le x \le 3$$

 $\frac{\pi}{27} (730\sqrt{730} - 1)$

5. Find the area of the surface obtained by rotating the curve about the *x*-axis.

$$x = \frac{1}{2\sqrt{2}} \left(y^2 - \ln y \right), \quad 1 \le y \le 2$$

$$\frac{\pi}{8} (21 - 8 \ln 2 - (\ln 2)^2)$$

6. Let *L* be the length of the curve y = f(x), $a \le x \le u$, where *f* is positive and has a continuous derivative. Let S_f be the surface area generated by rotating the curve about the *x*-axis. If *c* is a positive constant, define g(x) = f(x) + c and let S_g be the corresponding surface area generated by the curve y = g(x), $a \le x \le u$. Express S_g in terms of S_f and *L*.

$S_g = S_f + 2\pi cL$

7. If the curve y = f(x), $w \le x \le u$, is rotated about the horizontal line y = r, where $f(x) \le r$, find a formula for the area of the resulting surface.

$$\int_{w}^{u} 2\pi \left(r - f(x)\right) \sqrt{1 + \left(\frac{df(x)}{dx}\right)^2} dx$$