1. Find the area of the surface obtained by rotating the curve about the y-axis.

$$
\begin{aligned}
& y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x, \quad 1 \leq x \leq 2 \\
& 10 \pi / 3
\end{aligned}
$$

2. Find the area of the surface obtained by rotating the curve about the x-axis.

$$
x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}, \quad 1 \leq y \leq 3
$$

$$
48 \pi
$$

3. If the infinite curve $y=e^{-x}, x \geq 0$, is rotated about the x-axis, find the area of the resulting surface.

$$
\pi[\sqrt{2}+\ln (1+\sqrt{2})]
$$

4. Find the area of the surface obtained by rotating the curve about the x-axis.

$$
\begin{aligned}
& y=x^{3}, 0 \leq x \leq 3 \\
& \frac{\pi}{27}(730 \sqrt{730}-1)
\end{aligned}
$$

5. Find the area of the surface obtained by rotating the curve about the x-axis.

$$
\begin{aligned}
& x=\frac{1}{2 \sqrt{2}}\left(y^{2}-\ln y\right), \quad 1 \leq y \leq 2 \\
& \frac{\pi}{8}\left(21-8 \ln 2-(\ln 2)^{2}\right)
\end{aligned}
$$

6. Let L be the length of the curve $y=f(x), a \leq x \leq u$, where f is positive and has a continuous derivative. Let S_{f} be the surface area generated by rotating the curve about the x-axis. If c is a positive constant, define $g(x)=f(x)+c$ and let S_{g} be the corresponding surface area generated by the curve $y=g(x), a \leq x \leq u$. Express S_{g} in terms of S_{f} and L.

$$
S_{g}=S_{f}+2 \pi c L
$$

7. If the curve $y=f(x), w \leq x \leq u$, is rotated about the horizontal line $y=r$, where $f(x) \leq r$, find a formula for the area of the resulting surface.

$$
\int_{w}^{u} 2 \pi(r-f(x)) \sqrt{1+\left(\frac{d f(x)}{d x}\right)^{2}} d x
$$

