

Outline for Week 1

(a)Review of functions and graphs
(b)Review of limits
(c)Review of derivatives - idea of velocity, tangent and normal lines to curves
(d)Review of related rates and max/min problems

Questions for discussion...

1. Describe the graph of the function $f(x)$ (use calculus vocabulary as appropriate).
2. The graph intersects the y-axis at one point. What is it (how do you find it)?
3. How do you know there are no other points where the graph intersects the \mathbf{y}-axis?
4. The graph intersects the \mathbf{x}-axis at four points. What are they (how do you find them)?
5. How do you know there are no other points where the graph intersects the x -axis?
6. The graph has a low point around $x=4, y=-100$. What is it exactly? How do you find it?
7. Where might this function come from?

Welcome to the Course

1. Penn Math 104 - Calculus I
2. Topics: quick review of high school calculus, methods and applications of integration, infinite series and applications, some functions of several variables.
3. College-level pace and workload:

Moves very fast - twelve sessions to do everything!
Demanding workload, but help is available!
YOU ARE ADULTS - how much do you need to practice each topic?
Emphasis on applications - what is this stuff good for?
4. Opportunities to interact with instructor, TA, and other students

Functions and Graphs

The idea of a function and of the graph of a function should be very familiar

$$
f(x)=x^{4}-3 x^{3}-10 x^{2}-2 x+3
$$

Kinds of functions that should be familiar:

Linear, quadratic
Polynomials, quotients of polynomials
Powers and roots
Exponential, logarithmic
Trigonometric functions (sine, cosine, tangent, secant, cotangent, cosecant)
Hyperbolic functions (sinh, cosh, tanh, sech, coth, csch)

Quick Question

The domain of the function

$$
f(x)=\frac{\sqrt{1-x}}{x^{2}-2 x} \quad \text { is... }
$$

A. All x except $x=0, x=2$
B. All $x \leq 1$ except $x=0$.
C. All $x \geq 1$ except $x=2$.
D. All $x \leq 1$.
E. All $\mathrm{x} \geq 1$.

Quick Question

The period of the function

$$
f(x)=\sin \left(\frac{3 \pi x}{5}\right) \quad \text { is... }
$$

A. 3
B. 3/5
C. $10 / 3$
D. $6 / 5$
E. 5

Quick Question

Which of the following has a graph that is symmetric with respect to the \mathbf{y}-axis?
A. $\mathrm{y}=\frac{x-1}{x}$
B. $\mathbf{y}=2 x^{4}-1$
C. $\mathrm{y}=x^{3}-2 x$
D. $\mathbf{y}=x^{5}-2 x^{2}$
E. $\mathbf{y}=\frac{x}{x^{3}+3}$

First things first...

First some notation and a few basic facts. Let f be a function, and let a and L be fixed numbers.

$$
\text { Then } \lim _{x \rightarrow a} \mathrm{f}(x)=L \text { is read }
$$

'the limit of $f(x)$ as x approaches a is $L^{\prime \prime}$

You probably have an intuitive idea of what this means.
And we can do examples:

Definition of Limit

So it is pretty clear what we mean by

$$
\lim _{x \rightarrow a} f(x)=L
$$

But what is the formal mathematical definition?

Properties of real numbers

Least upper bound property

> If a set of real numbers has an upper bound then it has a least upper bound.

Important example

The set of real numbers \mathbf{x} such that $x^{2}<2$. The corresponding set of rational numbers has no least upper bound. But the set of reals has the number $\sqrt{2}$

In an Advanced Calculus course, you learn how to start from this property and construct the system of real numbers, and how the definition of limit works from here.

Official definition
$\lim _{x \rightarrow a} f(x)=L$ means that for any $\varepsilon>0$, no matter how small, you can find a $\delta>0$ such that if x is within δ of a, i.e., if $|x-a|<\delta$, then $|f(x)-L|<\varepsilon$

For example....

$$
\lim _{x \rightarrow 5} x^{2}=25
$$

because if $\varepsilon<1$ and we choose $\delta<\frac{1}{11} \varepsilon$
Then for all x such that $|x-5|<\delta$ we have
$5-\delta<x<5+\delta$ and so

$$
25-10 \delta+\delta^{2}<x^{2}<25+10 \delta+\delta^{2}
$$

which implies
$\left|x^{2}-25\right|<10 \delta+\delta^{2}<10 \frac{\varepsilon}{11}+\frac{\varepsilon^{2}}{121}<\varepsilon$

Top ten famous limits:

1. $\lim _{x \rightarrow 0+} \frac{1}{x}=\infty \quad \lim _{x \rightarrow 0-} \frac{1}{x}=-\infty$

2. $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
3. For $\underline{\text { any }}$ value of $n, \lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0$
and for any positive value of $n, \lim _{x \rightarrow \infty} \frac{\ln x}{x^{n}}=0$
4. $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$
does not exist!

Basic properties of limits

I. Arithmetic of limits:

If both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) \pm g(x) & =\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a} f(x) g(x) & =\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)
\end{aligned}
$$

and if
$\lim _{x \rightarrow a} g(x) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

II. Two-sided and one-sided

 limits:$\lim _{x \rightarrow a} f(x)=L$ if and only if
BOTH $\lim _{x \rightarrow a+} f(x)=L$ and $\lim _{x \rightarrow a-} f(x)=L$

III. Monotonicity:

If $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ for all x near a, then $\lim _{x \rightarrow a} \mathrm{f}(x) \leq \lim _{x \rightarrow a} \mathrm{~g}(x)$

Now you try this one...

$$
\lim _{t \rightarrow 0} \frac{\sqrt{2-t}-\sqrt{2}}{t}=
$$

A. 0
E. - 1
B. ∞
F. $\sqrt{2}$
C. $-1 / 2$
G. -2
D. $\frac{1}{2 \sqrt{2}}$
H. $-\frac{1}{2 \sqrt{2}}$

Continuity

A function f is continuous at $\boldsymbol{x}=a$ if it is true that $\lim _{x \rightarrow a} f(x)=f(a)$
(The existence of both the limit and of $f(a)$ is implicit here).
Functions that are continuous at every point of an interval are called "continuous on the interval".

Intermediate value theorem

The most important property of continuous functions is the "common sense" Intermediate Value Theorem:
Suppose f is continuous on the interval $[a, b]$, and $f(a)=m$, and $f(b)=M$, with $m<M$. Then for any number p between m and M, there is a solution in $[a, b]$ of the equation $f(x)=p$.

Application of the intermediate-value theorem

Since $f(0)=-2$ and $f(2)=+2$, there must be a root of $f(x)=0$ in between $x=0$ and $x=2$. A naive way to look for it is the "bisection method" -- try the number halfway between the two closest places you know of where f has opposite signs.

$$
f(x)=x^{3}-2 x-2
$$

We know that $f(0)=-2$ and $f(2)=2$, so there is a root in between. Choose the halfway point, $x=1$.

Since $f(1)=-3<0$, we now know (of course, we already knew from the graph) that there is a root between 1 and 2 . So try halfway between again:

$$
f(1.5)=-1.625
$$

So the root is between 1.5 and 2 . Try 1.75:

$$
f(1.75)=-.140625
$$

$$
f(x)=x^{3}-2 x-2
$$

We had $f(1.75)<0$ and $f(2)>0$. So the root is between 1.75 and 2 . Try the average, $x=1.875$

$$
f(1.875)=.841796875
$$

f is positive here, so the root is between 1.75 and 1.875 . Try their average ($\mathrm{x}=1.8125$):

$$
f(1.8125)=.329345703
$$

So the root is between 1.75 and 1.8125 . One more:

$$
f(1.78125)=.089141846
$$

So now we know the root is between 1.75 and 1.8125 .
You could write a computer program to continue this to any desired accuracy.

Derivatives

Let's discuss it:

1. What, in a few words, is the derivative of a function?
2. What are some things you learn about the graph of a function from its derivative?
3. What are some applications of the derivative?
4. What is a differential? What does $d y=f$ ' $(x) d x$ mean?

Derivatives (continued)

Derivatives give a comparison between the rates of change of two variables:
When x changes by so much, then y changes by so much.
Derivatives are like "exchange rates".

$6 / 03 / 02$	1 US Dollar = 1.0650 Euro
	1 Euro = 0.9390 US Dollar (USD)
$6 / 04 / 02$	1 US Dollar =1.0611 Euro
	1 Euro = 0.9424 US Dollar (USD)

Definition of derivative:

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Common derivative formulas:

Derivative question \#2

Derivative question \#4

What is the largest interval on which the
function $f(x)=\frac{x}{x^{2}+1}$ is concave upward?
A. $(0,1)$
B. $(1,2)$
C. $(1, \infty)$
D. $(0, \infty)$
E. $(1, \sqrt{3})$
F. $(\sqrt{3}, \infty)$
G. $(\sqrt{2}, \infty)$
H. $(1 / 2, \infty)$

The meaning and uses of derivatives, in particular:

- (a) The idea of linear approximation
- (b) How second derivatives are related to quadratic functions
- (c) Together, these two ideas help to solve max/min problems

Basic functions --linear and

 quadratric.- The derivative and second derivative provide us with a way of comparing other functions with (and approximating them by) linear and quadratic functions.
- Before you can do that, though, you need to understand linear and quadratic functions.

Quadratic functions

- Quadratic functions have parabolas as their graphs:
- Linear functions occur in calculus as differential approximations to more complicated functions (or first-order Taylor polynomials):
- $\quad f(x)=f(a)+f^{\prime}(\mathbf{a})(x-a)$ (approximately)

Let's review

- Let's review: linear functions of one variable in the plane are determined by one point + slope (one number):
- $\quad y=4+3(x-2)$

Linear functions

They also help us tell...

- ... relative maximums from relative minimums -- if $f^{\prime}(a)=0$ the quadratic approximation reduces to
- $f(x)=f(a)+f^{\prime \prime}(a)(x-a)^{2} / 2!$ and the sign of f '(a) tells us whether $x=a$ is a relative $\max \left(f^{\prime \prime}(a)<0\right)$ or a relative $\min \left(f^{\prime \prime}(a)>0\right)$.

Position, velocity, and acceleration:

You know that if $y=f(t)$ represents the position of an object moving along a line, the $v=f^{\prime}(t)$ is its velocity, and $a=f{ }^{\prime \prime}(t)$ is its acceleration.

Example: For falling objects, $\mathbf{y}=y_{0}+v_{0} t-16 t^{2}$ is the height of the object at time t, where y_{0} is the initial height (at time $\mathbf{t}=\mathbf{0}$), and v_{0} is its initial velocity.

Also, by way of review, recall that to find the maximum and minimum values of a function on any interval, we should look at three kinds of points:

1. The critical points of the function. These are the points where the derivative of the function is equal to zero.
2. The places where the derivative of the function fails to exist (sometimes these are called critical points,too).
3. The endpoints of the interval. If the interval is unbounded, this means paying attention to

$$
\lim _{x \rightarrow \infty} \mathrm{f}(x) \text { and/or } \lim _{x \rightarrow(-\infty)} \mathrm{f}(x) .
$$

Related Rates

Recall how related rates work. This is one of the big ideas that makes calculus important:

If you know how z changes when y changes ($d z / d y$) and how y changes when x changes ($d y / d x$), then you know how z changes when x changes:

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

Remember the idea of implicit differentiation: The derivative of $f(y)$ with respect to x is $f^{\prime}(y) \frac{d y}{d x}$

More on related rates

The idea is that "differentiating both sides of an equation with respect to $x^{\prime \prime}$ [or any other variable] is a legal (and useful!) operation.

This is best done by using examples...

[^0]
Greatest Hits...

A weather balloon is rising vertically at a rate of $2 \mathrm{ft} / \mathrm{sec}$. An observer is situated 100 yds. from a point on the ground directly below the balloon. At what rate is the distance between the balloon and the observer changing when the altitude of the balloon is 500 ft ?

The ends of a water trough 8 ft long are equilateral triangles whose sides are 2 ft long. If water is being pumped into the trough at a rate of $5 \mathrm{cu} \mathrm{ft} / \mathrm{min}$, find the rate at which the water level is rising when the depth is 8 in.

Gas is escaping from a spherical balloon at a rate of $10 \mathrm{cu} \mathrm{ft} / \mathrm{hr}$. At what rate is the radius changing when the volume is 400 cu ft ?

Integrals

Start with dx -- this means "a little bit of x " or "a little change in x "

If we add up a whole bunch of little changes in x, we get the "total change of x " --

A tautology question: If you add up all the changes in x as x changes from 2 to 7 , what do you get?
A. 0
B. 2
C. 5
D. 7
E. cannot be determined

We write this in integral notation as: $1 d x=5$

If $y=f(x)$, then we write $d y=f^{\prime}(x) d x$.
To add up all the "Iittle changes in y " as x changes from 2 to 7, we should write $\int_{2}^{7} f^{\prime}(x) d x$ or $\int_{2}^{7} \frac{d f}{d x} d x$
... and the answer should be the total change in y

$$
\int_{2}^{7} \frac{d f}{d x} d x=f(7)-f(2)
$$

This is the content of the fundamental theorem of calculus!

The fundamental theorem of calculus...

gives the connection between derivatives and integrals. It says you can calculate

$$
\int_{a}^{b} g(x) d x
$$

precisely if you can find a function whose derivative is $\mathbf{g}(\mathbf{x})$. And the result is the difference between the value of the "anti-derivative" function evaluated at b minus the same function evaluated at a.

Basic antiderivative formulas:

$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad$ except for $\mathrm{n}=-1$	$\int \frac{1}{x} d x=\ln (x)+C$
$\int \cos (x) d x=\sin (x)+C$	$\int e^{x} d x=e^{x}+C$
$\sin (x) d x=-\cos (x)+C$	
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)+C$	$\int \frac{1}{1+x^{2}} d x=\arctan (x)+C$

Fundamental Theorem
 Workout

Let $f(x)=\int_{x}^{x^{2}} t^{2} d t$
Find the value of f '(1) -- the
derivative of f at 1 .
A. 3
B. 8
C. 4
D. 0
E. 5
F. 2
G. 6
H. 1

By Newton's time, people realized that it would be sufficient to handle regions that had three straight sides and one curved side (or two or one straight side -- the important thing is that all but one side is straight). Essentially all regions can be divided up into such regions.

Limits of Riemann sums

A kind of limit that comes up occasionally is an integral described as the limit of a Riemann sum. One way to recognize these is that they are generally
expressed as
, where
the
'something" depends on n as well as on i.

Green graph

Again, recall that one way to look at integrals is as areas under graphs, and we approximate these areas as sums of areas of rectangles.

This is a picture of the"right endpoint" approximation to the ${ }^{0.4}$ integral of a function.

First, we need a $1 / \mathrm{n}$ for our $(b-a) / \mathrm{n}$.
So we can rewrite the expression under the summation sign as $\left(\frac{1}{n}\right)\left(\frac{i}{n}\right)^{3}$. Now we need to figure out a and b. For $(b-a) / n=1 / n$, we need $b-a=1$. And i / n appears in the other factor, we should choose $\mathrm{a}=0$. If $\mathrm{f}(\mathrm{x})=x^{3}$, then we'll have $\frac{(b-a)\left(a+\left(\frac{i(b-a)}{n}\right)\right.}{n}=\frac{1}{n}\left(\frac{i}{n}\right)^{3}$. Thus the limit Of the sum is equal to $\int_{0}^{1} x^{3} d x=\frac{1}{4}$.

Example...

An object moves in a force field so that its acceleration at time t is $\mathbf{a}(\mathrm{t})=\mathbf{t}^{\mathbf{2}} \mathbf{- t + 1 2}$ (meters per second squared). Assuming the object is moving at a speed of 5 meters per second at time $\mathbf{t}=\mathbf{0}$, determine how far it travels in the first 10 seconds.

Solution...

First we determine the velocity, by integrating the acceleration. Because $v(0)=5$, we can write the velocity $v(t)$ as $5+a$ definite integral, as follows:
$v(t)=5+\int_{0}^{t} a(\tau) d \tau=5+\int_{0}^{t} \tau^{2}-\tau+12 d \tau=5+\frac{t^{3}}{3}-\frac{t^{2}}{2}+12 t$
The distance the object moves in the first $\mathbf{1 0}$ seconds is the total change in position. In other words, it is the integral of $d x$ as t goes from 0 to 10 . But $d x=v(t) d t$. So we can write:
(distance traveled between $\mathbf{t}=\mathbf{0}$ and $\mathbf{t}=\mathbf{1 0})=\int_{0}^{10} v(t) d t$
$=\int_{0}^{10} 5+\frac{t^{3}}{3}-\frac{t^{2}}{2}+12 t d t \quad=\mathbf{3 9 5 0} / \mathbf{3}=\mathbf{1 3 1 6 . 6 6 6} \ldots$ meters.

Substitution

In some ways, substitution is the most important technique, because every integral can be worked this way (at least in theory).

The idea is to remember the chain rule: If G
is a function of u and u is a function of x, then the
derivative of G with respect to x is:
$\frac{\mathbf{d G}}{\mathbf{d x}}=\mathbf{G}^{\prime}(\mathbf{u}) \mathbf{u}^{\prime}(\mathbf{x})$
$\frac{d \mathrm{G}}{\mathrm{dx}}=\mathbf{G}^{\prime}(\mathbf{u}) \mathbf{u}^{\prime}(\mathbf{x})$

To do an integral problem...

$$
\begin{aligned}
& \text { For a problem like } \int x^{3} e^{x^{4}} d x \\
& \text { we suspect that the } x^{4} \text { should be considered as } u \\
& \text { and then } x^{3} d x \text { is equal to } d u / 4 \text {. } \\
& \text { And so: } \\
& \int x^{3} e^{x^{4}} d x=\int e^{u} \frac{d u}{4}=\frac{1}{4} \int e^{u} d u=\frac{1}{4} e^{u}+C=\frac{1}{4} e^{x^{4}}+C
\end{aligned}
$$

Methods of integration

Before we get too involved with applications of the integral, we have to make sure we're good at calculating antiderivatives.
There are four basic tricks that you have to learn (and hundreds of $a d h o c$ ones that only work in special situations):

1. Integration by substitution (chain rule in reverse)
2. Trigonometric substitutions (using trig identities to your advantage)
3. Partial fractions (an algebraic trick that is good for more than doing integrals)
4. Integration by parts (the product rule in reverse)

We'll do \#1 this week, and the others later. LOTS of practice is needed to master these!

Now you try a couple...

\square

$$
\int_{0}^{\sqrt{\pi / 2}} x \cos x^{2} d x=
$$

A) 0

B) $\mathbf{1} 2$
C) 1
D) $\pi / 2$
E) $\sqrt{\pi}$

[^0]: ## Related Rates Greatest Hits

 A light is at the top of a 16-ft pole. A boy 5 ft tall walks away from the pole at a rate of $\mathbf{4} \mathbf{f t} / \mathrm{sec}$. At what rate is the tip of his shadow moving when he is $\mathbf{1 8} \mathbf{f t}$ from the pole? At what rate is the length of his shadow increasing?

 A man on a dock is pulling in a boat by means of a rope attached to the bow of the boat 1 ft above the water level and passing through a simple pulley located on the dock 8 ft above water level. If he pulls in the rope at a rate of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the boat approaching the dock when the bow of the boat is $\mathbf{2 5} \mathbf{f t}$ from a point on the water directly below the pulley?

