\qquad

(Practice) In Class MidTerm Exam for Math 113

10-11:30 am, March 20, 2008

Problem	Points	Score
1	$? ?$	
2	$? ?$	
3	$? ?$	
4	$? ?$	
5	$? ?$	
6	$? ?$	
7	$? ?$	
Total	100	

- Please show ALL your work on this exam paper. Partial credit will be awarded where appropriate.
- Some problems will be asking you to prove results covered in class. For those that do not, you may quote without proof the theorems/propositions/lemmas given during lecture as long as you state each result clearly. Points may be deducted for incorrect or missing hypotheses.
- NO calculators are permitted.
- This is a practice exam.

1. (a) Give the definition of a conformal map.
(b) Give the condition(s) for a holomorphic map to be conformal.
(c) Consider the wedge $\Omega=\left\{z \in \mathbb{C} \left\lvert\, 0<\arg \{z-3 i\}<\frac{\pi}{3}\right.\right\}$. Give a conformal mapping of Ω into the unit disk $B_{1}(0)=\{z \in \mathbb{C}| | z \mid<1\}$ and justify your answer.
2. Suppose that $a, b \in \mathbb{C}$ are two vertices of a square. Find the two other vertices in all possible cases.
3. Let A be the complement in \mathbb{C} of the non-positive real axis, i.e. $A=\mathbb{C}-\{x \in \mathbb{R} \mid x \leq 0\}$.
(a) Show that there exists a unique function f, which is holomorphic on A and satisfies $f(x)=x^{x}$ for all real $x>0$.
(b) Find $f(i)$ and $f^{\prime}(i)$.
4. (a) Prove or disprove: There exists a holomorphic mapping from \mathbb{C} to the upper half plane

$$
\{z \in \mathbb{C} \mid \operatorname{Im}\{z\}>0\}
$$

(b) Prove or disprove: The image of \mathbb{C} under a nonconstant entire mapping is dense in \mathbb{C}.
5. Consider the stereographic projection of the sphere of radius 1 centered at the origin in \mathbb{R}^{3}

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

from the south pole $(0,0,-1)$ onto the $x y$-plane. Derive the expression for the image of $\left(x_{1}, x_{2}, x_{3}\right)$ under this map and write it out as a complex number.
6. Let f be entire and $u(x, y)=\operatorname{Re}(f(x+i y))$. Suppose that

$$
u(x, y)=u(-y, x)
$$

Prove that for all $z \in \mathbb{C}, f(z)=f(i z)$.
7. Show that if F is analytic on A, then so is f where

$$
f(z)=\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}
$$

if $z \neq z_{0}$ and $f\left(z_{0}\right)=F^{\prime}\left(z_{0}\right)$ where z_{0} is some point of A.

Extra space for work:

