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1 Lecture 2

Math 618 Get Ahead class: tomorrow 1:30-3:00 in DRL 4C4
Two theorems we will prove:

Theorem 1.1 (Whitehead Theorem). If f : X → Y is a pointed morphism of
CW Complexes such that f∗ : πk(X,x)→ πk(Y, f(x)) is an isomorphism for all
k, then f is a homotopy equivalence.

Example 1.1. C ⊂ [0, 1] the Cantor Set. Let Cδ be the Cantor set with the
discrete topology. Then Cδ → C induces isomorphisms on all homotopy groups,
but it is not a homotopy equivalence, so the CW hypothesis is required.

Theorem 1.2 (Hurewicz Theorem). Let X be a space and πk(X,x) = 0 for
k < n. Then Hk(X,x0) = 0 for k < n and πn(X,x0) ' Hn(X,x0) for n ≥ 1.

Theorem 1.3 (Hurewicz Theorem, Relative Version). Let (X,A) be a pair
(A ⊂ X), then if πk(X,A) = 0 for all k < n then Hk(X,A) = 0 for k < n and
πn(X,A) ' Hn(X,A).

Corollary 1.4 (Whitehead Theorem 2). If X,Y are CW complexes, π1(X) =
π1(Y ) = 0 and f : X → Y induces an isomorphism on homology f∗ : Hk(X)→
Hk(Y ) for all k, then f is a homotopy equivalence.

Proof. Assume WLOG (which will be explained later) that f : X → Y is
an inclusion. Then π1(Y,X) = 0 because both are simply connected, and so
H1(Y,X) = 0.

And so, π2(Y,X) ' H2(Y,X) by Hurewicz. And so now we look at a part
of the long exact sequence on homology, H2(X) → H2(Y ) → H2(Y,X) →
H1(X)→ H1(Y ), and as H2(Y,X) is trapped between isomorphisms, it is zero,
so π2(Y,X) = 0.

So then Hk(Y,X) = 0 and so πk(Y,X) = 0 for all k. So we have 0 →
πk(X)

f∗→ πk(Y ) → πk(Y,X) → πk−1(X) → πk−1(Y ) so πk(Y,X) = 0 for all k
and so we get that fk : πk(X)→ πk(Y ) is an isomorphism for all k. Therefore,
by Whitehead theorem 1, f is a homotopy equivalence.

Application: Suppose that X3 is a closed, simply connected 3-manifold.
Then X ' S3 (homotopy equivalent).

Proof. π1(X) = 0 ⇒ H1(X) = 0 ⇒ H2(X) = 0 by Poincare Duality and
Universal Coefficient Theorem, and H3(X) = Z, by Poincare Duality. Now,
Hurewicz implies that π1(X) = π2(X) = 0 and π3(X) = Z. Obtain a map by
f : S3 → X mapping S3 to the generator of π3.

So now we claim that f∗ : H∗(S3) → H∗(X) is an isomorphism (easily
checked), and so by Whitehead 2, f is a homotopy equivalence.
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Why is Homology easy to calculate and homotopy not?
Answer: Homology behaves well with respect to cellular inclusions (excision).

Spaces like manifolds are easy to decompose by such inclusions. On the other
hand, homotopy behaves badly with respect to these inclusions. There is a class
of maps and spaces for which homotopy behaves well and homology behaves
badly.

Definition 1.1 (Pair). A pair of topological spaces is just (X,A) where A ⊂ X.
A map of pairs f : (X,A) → (Y,B) is a map f : X → Y such that f(A) ⊂ B.
A product of pairs is (X × Y,X × B ∪ A × Y ). This is the Leibniz rule (try
A = ∂X and B = ∂Y to see it)

The category Top embeds into 2−Top (the category of pairs) by X 7→ (X, ∅).
So (X,A)× (I, ∅) = (X × I, A× I).

Definition 1.2 (Homotopic Rel X ′). Let f0, f1 : (X,A) → (Y,B) are maps of
pairs, X ′ ⊂ X, and f0|X′ = f1|X′ . Then we say that f0 is homotopic to f1 rel X ′

iff there exists a homotopy H : (X,A)× I → (Y,B) such that H(x, 0) = f0(x),
H(x, 1) = f1(x), H(x, t) = f0(x) = f1(x) for x ∈ X ′.

Remarks/Easy Exercises:

1. ' rel X ′ is an equivalence relation.

2. Composition of homotopic maps are homotopic. That is, if f0 ' f1 rel
X ′ are maps from (X,A)→ (Y,B) and g0 ' g1 rel Y ′ are maps (Y,B)→
(Z,C), then g0 ◦ f0 ' g1 ◦ f1 rel X ′.

Notions of Homotopy Equivalence and Contractible work out here.

Definition 1.3 (Retract, Weak Retract). A ⊆ X is called a retract if the
inclusion has a left inverse r : X → A such that ri = idA.

It’s called a weak retract if there exists r such that ri ' idA.

Let A be the subset of I2 which consists of the segments (x, 0) for x ∈ I,
(0, y) for y ∈ I, and (1/n, y) for y ∈ I. A is a weak retract, since X → A by
(x, y) → (0, 1) collapses the whole thing in the y direction, then the x, then
back up to the point. Then A→ X → A is homotopic to the identity, but A is
not a retract of X.

Definition 1.4 (Homotopy Extension Property, HEP). A pair (X,A) has the
homotopy extension property, (HEP), with respect to Y if given f : X → Y ,
and H : A × I → Y such that H(a, 0) = f(a) for all a ∈ A, there exists
H̃ : X × I → Y such that H̃(x, 0) = f(x) for all x ∈ X and H̃(a, t) = H(a, t)
for all (a, t) ∈ A× I.

Lemma 1.5. Suppose that (X,A) has HEP relative to Y . Let f0, f1 : A → Y
and f0 ' f1. Then if f0 extends to X, then so does f1.
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Proof. HEP gives us the following diagram. The result follows.

X × 0 X × I

A× 0 A× I

Y

......................................................................................................................................................................................................................................... ............

.............................................................................................................................................................................................................................................. ............

....................................................................................................................................................................................................................................................................
...
.........
...

....................................................................................................................................................................................................................................................................
...
.........
...

............................................................................................................................................................................ .........
...

f0 ' f1

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........................

H̃

.........................................................................................................................................................................
...
............

H

Definition 1.5 (Cofibration). A map i : A → X is a cofibration if given
f : X → Y and H : A × I → Y such that H(a, 0) = f(i(a)) for all a ∈ A then
∃H̃ : X × I → Y such that H̃(i(a), t)→ H(a, t) and H(x, 0) = f(x).

Theorem 1.6. Let (X,A), ι : A → X the inclusion, be a cofibration. Then if
A is a weak retract of X, then it is a retract of X.

Proof. Let r : X → A satisfy that rι ' idA and let H be that homotopy. We
get the following diagram:

X × 0 X × I

A× 0 A× I

A

......................................................................................................................................................................................................................................... ............

.............................................................................................................................................................................................................................................. ............

....................................................................................................................................................................................................................................................................
...
.........
...

....................................................................................................................................................................................................................................................................
...
.........
...

(ι, b)

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

r

.........................................................................................................................................................................
...
............

H

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........................

H̃

Let r′ = H̃(x, 1), and r′ ' r and we get r′ι = idA.

We will now do a construction to check the WLOG in Whitehead 2.
f : X → Y any map. Define Cyl(f) ≡ ((X × I)

∐
Y )/((x, 1) ∼ f(x)).

Then ι : X → Cyl(f) by x 7→ (x, 0) is an inclusion and j : Y → Cyl(f) by
j(y) = y. Then r : Cyl(X)→ Y , r(x, t) = f(x) and r(y) = y.

Theorem 1.7. There exists a commutative diagram

X Y

Cyl(f)

................................................................................................................. ............
f

..............................................................................................................

ι

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................
............

r
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Such that

1. r ◦ ι = f

2. jr ' idCyl(f) rel Y , and so Y ' Cyl(f)

3. ι is a cofibration

Proof. The first part is trivial.
jr(x, t) = f(x) ∈ Y and gr(y) = y, so we set H((x, t), s) = (x, (1 − s)t + s)

and H(y, s) = y.
So all that remains is the cofibration part. Suppose that g : Cyl(f) → Z

and H : X × I → Z.

Cyl(f)× 0 Cyl(f)× I

X × 0 X × I

Z

....................................................................................................................................................................................... ............

......................................................................................................................................................................................................................................... ............

....................................................................................................................................................................................................................................................................
...
.........
...

ι

....................................................................................................................................................................................................................................................................
...
.........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..................
............

g

.........................................................................................................................................................................
...
............

H

Define H̃(y, s) = g(y) for (y, s) ∈ Y × I, H̃((x, t), s) = g((x, 2t−s
2−s )) for

0 ≤ s ≤ 2t ≤ 2 and as g((x, s−2t
1−t )) for 0 ≤ 2t ≤ s ≤ 1.

2 Lecture 3

Recall: Every cofibration A→ X is an injection.
Up to homotopy, every map is a cofibration.

Proposition 2.1. A→ X is a cofibration iff the map A× I ∪X×{0} → X× I
has a retraction.

Proof. Use the HEP in each direction.

Lemma 2.2. A→ A∪f en is a cofibration. More generally, A→ A∪f ∪αenα is
a cofibration.

Proof. ∂en → en is a cofibration, since ∂en → Cyl(∂e \ pt) is a cofibration
By the proposition, there exists a retraction of en× I r→ ∂en× I ∪ en×{0}.
We need to show that A ∪f en × I retracts onto A× I ∪A ∪f en × {0}.
(A ∪f en) × I ' A × I ∪f×idI (en × I). Define r̃ : A × I ∪f×idI (en × I) →

A× I ∪ (A ∪f en × {0}).

Define a relativie CW complex (X,A) start with A and attach 0-cells to get
a 0-skeleton, (X,A)0. (X,A)k is built from (X,A)k−1 by attaching k-cells.
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Proposition 2.3. If (X,A) is a relative CW complex, then A → X is a cofi-
bration.

Proof. Is by induction, since a composition of cofibrations is a cofibration.

Recall that πk(X,x0) ≡ [(Ik, ∂Ik), (X,x0)] =homotopy classes of maps.
A homotopy H between α, β : (Ik, ∂Ik) → (X,x0), H : (Ik, ∂Ik) × I →

(X,x0) such that H(x, 0) = α(x) and H(x, 1) = β(x).
α + β(x1, . . . , xk) = α(2x1, . . . , xk) on x1 ∈ [0, 1/2] and β(2x1 − 1, . . . , xk)

on [1/2, 1].

Lemma 2.4. If x, y are in the same path component, then πk(X,x) ' πk(X, y).

Proof. If γ is a path from x → y, define a map from πk(X,x) → πk(X, y) by
SEE PICTURE IN HATCHER Check that [γα], the homotopy class of γα only
depends on the homotopy class of α, and that [γ, α] only depends on [γ rel
x, y].

Thus, π1(X,x) acts on πk(X,x) for all k.

Proposition 2.5. Let p : (Y, y) → (X,x) be a covering space. Then p∗ :
πk(Y, y)→ πk(X,x) is an isomorphism for k ≥ 2.

Proof. If we have a map f : Z → X then a lift f̃ : Z → Y exists when
f∗π1(Z) ⊂ p∗π1(Y ).

Let α : Sk → X represent a homotopy class, then, since π1(Sk) = 0, it lifts
to α̃ : Sk → Y , so p∗ is surjective.

To show injectivity, let α : Sk → Y be such that pα ' cx the constant map.
Let H be a homotopy between pα and c∗.

By the homotopy lifting property, we get H̃ : Sk × I → Y , so α ' cy.

Proposition 2.6. If {Xα, xα} is a collection of pointed spaces, then

πk(
∏
α

Xα, {xα}) '
∏
α

πk(Xα, xα)

.

Proof. This is true by the definition of product, looking at the space of maps.

Definition 2.1 (Aspherical). A space X such that πk(X) = 0 for k ≥ 2 is
called aspherical

Proposition 2.7. If X and Y are two aspherical CW complexes and π1(X) '
π1(Y ), then X ' Y .

Conjecture 2.1 (Borel). If Xn, Y n are two aspherical manifolds such that
π1(X) ' π1(Y ), then X is homeomorphic to Y .
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How to construct aspherical manifolds:
Start with a contractible universal cover M , say, Rn. Find a proper, free

action of a group Γ on M and form the quotient M/Γ.
For instance, M = Sl2(R)/SO(2) ' H2 and Γ = PSL2(Z), and then H2/Γ

is aspherical.

Theorem 2.8 (Cartan). If X is a compact Riemannain manifold such that
κ ≤ 0 (sectional curvature), then X is aspherical.

Let (X,A, x0) be a pointed pair. Then πk(X,A, x0) is the set of homotopy
classes of maps (Ik, ∂Ik,Λk−1) → (X,A, x0) where Λk−1 = I × ∂Ik−1 ∪ {0} ×
Ik−1.

This is a set for k = 1, a group for k = 2 and an abelian group for k ≥ 3.

Theorem 2.9. There exists a long exact sequence

→ πk+1(X,A, x0)→ πk(A, x0)→ πk(X,x0)→ πk(X,A, x0)→ . . .

→ π2(X,x0)→ π2(X,A, x0)→ π1(A, x0)→ π1(X,x0)

.

3 Lecture 4

We will be talking about Function Spaces.
If X,Y are topological spaces, then we can look at Map(X,Y ) the set of

all continuous maps from X to Y . You can topologize this by giving it the
”compact-open.” It has a subbasis of sets of the form for each ⊂ X compact
and O ⊂ Y open, the set UK,O = {f : X → Y |f(K) ⊂ O}. Take the smallest
topology containing all of these.

Facts:

1. If Y is metric, then the compact-open topology coincides with the metric
topology d(f, g) = supx∈X dY (f(x), g(x)).

2. We want the following to be true: Map(X×Y, Z) 'Map(X,Map(Y, Z)).
We think of this as being analagous to the fact that homR(E ⊗R F,G) '
homR(E,homR(F,G)), that is, that − × Y is left adjoint to Map(Y,−).
This adjoint property is correct if you work in the category of compactly
generated spaces.

Examples:

1. Map(X × I, Y ) ' Map(X,Map(I, Y )), that is, the space of maps from
X × I to Y is homeomorphic to the space of maps from X into the maps
from I to Y .
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2. If X,Y are pointed sets, then Map0(X,Y ) are pointed maps, then we have
Map0(X ∧ Y,Z) ' Map0(X,Map(Y,Z)), where ∧ is the smash product.
The smash product is X∧Y = X×Y/(X×{y0}∪{x0}×Y ). So S1∧X =
S1 × X/{∗} × X ∪ S1 × {x0} '

∑
X, the suspension of X, which is

X × I/(X × {0} ' p0, X × {1} ' p1). We call S1 ∧ X the reduced
suspension.

Lemma 3.1. If ∗ → X is a cofibration, then
∑
X ' S1 ∧X.

3. If X is a space, then Map0(S1, X) ≡ ΩX.

Lemma 3.2. πn(X) ' πn−1(ΩX)

Proof. [(Sn, ∗), (X,x0)] = Map0(Sn, X)/homotopy is the same as the
set Map0(S1 ∧ Sn−1, X)/homotopy which is homeomorphic to the set
Map0(Sn−1,Map0(S1, X))/homotopy= πn−1(ΩX).

Corollary 3.3. πn(X) = πn−1(ΩX) = . . . = π0(ΩnX).

ΩX is a group up to homotopy, ie, an H space.

Definition 3.1 (H-space). (Y,m) is an H-space if m : Y × Y → Y is a con-
tinuous map which satisfies all of the categorical group axioms up to homotopy.
(sometimes without inverses)

Set PX = Map0(I,X) and call Map(S1, X) the free loop space.
Last time we defined πn(X,A, x0) = [(In, ∂In, Jn−1), (X,A, ∗)], and stated

the existence of a long exact sequence.

Lemma 3.4. f : (Dn, Sn−1, ∗) → (X,A, x0) represents 0 in πn(X,A, x0) iff f
is homotopic rel Sn−1 to a map whose image lies in A.

Proof. ⇐: f ' g rel Sn−1, [f ] = [g] and g ' cx0 by composing g with the
deformation retraction of Dn onto ∗ ∈ Sn−1.
⇒: Suppose that f : (Dn, Sn−1, ∗)→ (X,A, x0) represents 0 in πn(X,A, x0),

then f ' cx0 rel Sn−1, that is, there exists a homotopy H : (Dn × I, Sn−1 ×
I, ∗ × I) → (X,A, ∗) such that H(z, 0) = f and H(z, 1) = cx0 . So that f '
H|Dn×{1}∪Sn−1×I .

Definition 3.2 (n-connected). A space (X,x0) is called n-connected if we have
that πk(X,x0) = 0 for all k = 0, . . . , n. To be 0-connected means path connects,
and to be 1-connected is simply connected.

We say that (X,A) is n-connected if πk(X,A, x0) = 0 for k = 1, . . . , 0 and
that it is 0-connected, where it is 0-connected if each path compoentnt of X
intersects A.

Proposition 3.5. Let (X,A) be a relative CW pair, (Y,B) any pair with B 6= ∅.
Assume that for each k such that (X,A) has k-called that πk(Y,B) = 0. Then
any map f : (X,A)→ (Y,B) is homotopic rel A to a map where the image lies
in B.
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Proof. Start with an induction argument. If (X,A) is 0-connected, set (X,A)0 =
A ∪ 0-cells. So f |(X,A)0 ' to a map whose image lies in A.

Assume that f : (X,A) → (Y,B) has been homotoped rel (X,A)n−1 to a
map fn−1 with fn−1((X,A)n−1) ⊆ B.

We want to see that this homotopes further to a map fn with fn((X,A)n) ⊂
B.

Assume that en is an n-cell of (X,A)n. Then (en, ∂en) i→ (X,A)n
fn−1→ (Y,B)

the image [fn−1, i] ∈ πn(Y,B) = 0, and this implies that fn−1|(X,A)n−1∪en can
be homotoped rel ∂en to a map whose image is in B.

We can do this for all cells of dimension n, and so we get a map fn :
(X,A)n → B and a homotopy from fn−1 to fn rel (X,A)n−1, and so by HEP,
as (X,A)n−1 → (X,A)n is a cofibration. This homotopy extends to all of X.

We have a seuqence of maps fn and homotopies Hn from fn to fn+1. Define
on X×I a homotopy H(x, t) which is the nth homotopy for t ∈ [1− 1

2n , 1−
1

2n+1 ].
So on any finite skeleton (X,A)n the homotopy becomes stable after the nth

interval, so this extends to a homotopy on X × I.

Proposition 3.6. πk(Sn, ∗) = 0 for all k < n.

Proof. If f : N → M is a map of compact differentiable manifolds, then it
is homotopic to a differentiable map by Stone-Weierstrass. S othere exists a
differentiable map g : N → U ⊂ M which is as close as you want to f . So
now we have a homotopy between f and g. If g is a differentiable map, then by
Sard’s Theorem, it misses a point, and so if we retract Sn \ {∗} to a point, we
homotope g to a point, and so f is homotopic to a constnat map.

4 Lecture 5

Theorem 4.1. Let (X,A) be a relative CW-pair and (Y,B) an arbitrary pair
with B 6= ∅. Suppose that πk(Y,B) = 0 in all dimensions such that (X,A)
has a k-cell. Then any map f : (X,A) → (Y,B) is homotopic rel A to a map
g : X → B.

Theorem 4.2 (Whitehead). If f : X → Y is a map between CW-complexes
which induces an isomorphism on homotopy f∗ : πk(X,x0) ' πk(Y, y0) for all
k, then f is a homotopy equivalence. Moreover, if f : X → Y is an inclusion of
a subcomplex, then Y deformation retracts to X.

Proof. First assume that f : X → Y is such an inclusion. Then consider
(Y,X) → (Y,X). πk(Y,X) = 0 by the long exact sequence on homotopy, and
then we apply the theorem to the inclusion, getting that it is homotopic to g
rel X such that g : Y → X is a deformation retract.

Now assume that f : X → Y is cellular. Then Cyl(f) gives X → Cyl(f) ' Y
is a subcomplex, and so the result follows from the previous result.

The general result follows from the Cellular Approximation Theorem.
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Theorem 4.3 (Cellular Approximation Theorem). f : X → Y is any map
between CW complexes. Then it is homotopic to a cellular map.

Lemma 4.4. Let f : en → Z = W ∪ ek for n < k. Then f is homotopic rel
f−1(W ) to a map f1 : en → Z for which there exists a ball B ⊂ en such that

1. f1(B) ⊂ ek and f1|B is differentiable

2. B ⊃ f−1
1 (U) for some U a nonempty open subset of en.

3. f1 B misses some point of U .

We can now prove the Cellular Approximation Theorem.
We assume that f is cellular on Xn−1. Let en be an n-cell of X with en

compact, f(en) is compact, and so finitely many cells in Y meet f(en) closure.
We don’t have to worry about cells of dimension ≤ n. Let ek be the alrgest
dimensional cell which meets f(en) and k > n.

Then f : Xn−1 ∪ en → Y is homotopic rel Xn−1 to a map f1 which misses
a point of ek, call that point p.

So there exists a deformation of ek \ p to Y \ ek, and this gives a homotopy
of f on Xn−1 ∪ en to a map on Y \ ek, and we can replace f by this.

Do this for all the other cells that f(en) hits. So we arrive at a map f :
Xn−1 ∪ en → Y n. Now do this for all n-cells. So we get that our original f is
homotopic to a map which is cellular on Xn. Do this for each dimension.

This also works for relative pairs.
For a while, we will write the homotopy extension property as: p : Y → X

has the HLP, if you have the following diagram

A× I

A

X

Y
..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

p

.................................................................................................... ............H

................................................................................................................. ............
f

...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...............
............

∃

Definition 4.1 (Fibration). A map p : Y → X is called a fibration if it has the
HLP with respect to all spaces A.

Fact: p : X × F → X is always a fibration.
If (A,B) is a pair, then p has HLP for (X,A) if

A× I

A× {0} ∪B × I

X

Y
..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

p

.................................................................................................... ............H

........................................... ............
f

...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...............
............

∃

Proposition 4.5. p : Y → X is a Serre fibration if it has the relative HLP for
all pairs (Dn, ∂Dn), which is iff HLP for all CW complexes A.
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Lemma 4.6. p : Y → X has the relative HLP with respect to (Dn, ∂Dn) iff
HLP with respect to Dn.

Proof. (Dn × I,Dn × {0} ∪ ∂Dn × I) ' (Dn × I,Dn).

Definition 4.2 (Fiber Bundle). p : Y → X is a fiber bundle with fiber F ,
if ∀x ∈ X there exists a neighborhood U of x and a homeomorphism ϕU :
p−1(U)→ U × F .

Theorem 4.7. Any fiber bundle is a Serre fibration.

Proof. If p : X × F → X, we just proved it.
...

Suppose that A ⊂ X. Define ν = {f : I → X|f(0) ∈ A, f(t) /∈ A for t > 0},
then we get a fibration ν → A by f 7→ f(0). This is called the homotopy normal
bundle.

If N → M is an embedding of differentiable manifolds, p : ν → N and
π : Sν(N → M) → N (the normal sphere bundle), that is, π−1(x) = Sm−n−1.
Then, ν is fiber homotopy equivalent to Sν(N →M)

Which homotopy types are the homotopy types of compact orientable man-
ifolds?

The big homotopy consequence of manifoldness is Poincare Duality. That
is, there exists a fundamental class [M ] ∈ Hn(M,Z) such that − ∩ [M ] :
Hk(M,Z)→ Hn−k(M,Z) is an isomorphism.

Definition 4.3 (Poincare Duality Space). A finite CW complex is an n dimen-
sional Poincare Duality space iff there exists a class c ∈ Hn(X,Z) such that
− ∩ c : Hk(X,Z)→ Hn−k(X,Z) is an isomorphism.

Let X be a finite CW complex. Embed X → RN for some big N .
Now take ν(X → RN )→ X

Theorem 4.8 (Spivak). X is a PD space iff p−1(x) is homotopic to a sphere.

Theorem 4.9 (Browder). If X is a simply connected n ≥ 5, then X is homo-
topic to a manifold iff hν(i) is fiber homotopy equivalent to a sphere bundle on
X.

5 Lecture 6

Definition 5.1 (Hurewicz Fibration). p is a Hurewicz Fibration if it has teh
HLP with respect to all spaces.

Theorem 5.1 (Def of Serre Fibration). The Following are equivalent

1. p : Y → X is a Serre Fibration, that is, it has HLP with respect to discs.

2. p : Y → X has the HLP wrt to all CW complexes
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3. p : Y → X has the relative HLP wrt all pairs (Dn, ∂Dn)

4. p : Y → X has relative HLP wrt (Z,A) where A ⊂ Z is a subcomplex of a
CW complex Z where the inclusion is a homotopy equivalence.

From now on, a fibration will always be a Serre fibration.
Construction: Let f : X → Y be any map.
Facts: If p : E → Y is a fibration, then f∗E → X, is also a fibration.

Definition 5.2 (Homotopy Fiber). If f : X → Y is any map, the homotopy
fiber of f is the fiber of p : X ′ → Y where X ′ ' X and p is a fibration. This is
a well-defined homotopy type.

Theorem 5.2. Given a fibration p : Y → X with y0 7→ x0, there exists a long
exact sequence πk(F, y0)→ πk(Y, y0)→ πk(X,x0)→ . . ..

Proof. Look at the map p : (Y, F, y0) → (X,x0, x0). We claim that it is an
isomorphism on homotopy groups.

It is surjective: Let f : (Ik, ∂Ik)→ (X,x0). Apply the relative HLP. There
exists f̃ with pf̃ = f and pf̃(∂Ik) = x0, so f̃ : ∂Ik → F , and so f̃ ∈ πk(Y, F, y0)
which lifts f .

It is injective: Assume we have f̃0 and f̃1 with [pf̃0] = [pf̃1] in πk(X,x0).
Let H : (Ik, ∂Ik) × I → X be the homotopy taking pf̃0 to pf̃1. So we want to
lift the homotopy to Y . We use the relative HLP.

Example 5.1. S1 → S3 → S2 is the Hopf Fibration, and so we get that
πk+1(S2) → πk(S1) → πk(S3) → πk(S2) → . . .. As πj(S1) = 0 for j > 1, we
have that for k > 2, πk(S3)→ πk(S2) is an isomorphism.

So this says that π3(S2) = Z
Unfortunately, excision fails, so homotopy is harder here than homology.

Another good source of examples are quotients of a manifold by a compact
Lie group.

Suppose that G acts freely and differentiably on X, then G → X → G/X
is a fiber bundle with fiber G. If H ⊂ G is a closed subgroup, of a compact lie
group, then H → G→ G/H is a fiber bundle.

We will eventually prove the Hurewicz Theorem via the Serre Spectral Se-
quence.

Theorem 5.3 (CW Approximation Theorem). Given any space X, there exists
a CW complex Z and a map f : Z → X which is a weak homotopy equivalence.

Definition 5.3. f is a weak homotopy equivalence if πk(Z, z)→ πk(X, f(z)) is
an isomorphism for all k and all z. X and Y are weak homotopy equivalent if
there exists a weak homotopy equivalence between them.

Moreover, weak homotopy equivalence is an equivalence relation.
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6 Lecture 7

Definition 6.1 (CW Model). Let (X,A) be a pair with A a CW complex. We
say that (Z,A, f) is an n-connected CW model for (X,A) if

1. Z is a CW complex

2. (Z,A) is n-connected

3. f : Z → X such that f |A = idA and f∗ : πk(Z, z) → πk(X,x) is injective
for k ≥ n and surjective for k > n.

Since (Z,A) is n-connected we have injective for k < n and surjective for
k ≤ n.

Theorem 6.1. Every (X,A) for A 6= ∅ has an n-connected CW model for each
n.

Proof. We will construct a sequence of CW complexes Zn ⊂ Zn+1 with fn :
Zn → X such that Zk+1 is obtained from Zk by attaching ek+1’s and fk :
πi(Zk)→ πi(X) is injective for i < k and surjective for n < i ≤ k.

Set Zn = A and fn = idA. By induction, suppose that we’ve constructed Zk
satisfying the pushforward condition. We will now construct Zk+1. fk : Zk → X
satisfies the pushforward conditions.

fk : πk(Zk) → πk(X) is not necessarily an injection. Let ϕα : Sk → Zk
be a collection of maps such that [ϕα] generates kerπk(Zk) → πk(X). Let
Yk+1 = Zk ∪

∐
ek+1
α glued by ϕα.

fkϕα : Sk → X are all homotopically trivial, and so fk extends to Yk+1 → X.
Now the map πk(Yk+1) → πk(X) is injective, and its still surjective. We still
don’t have fj+1 : Yk+1 → X is surjection on πk+1.

So choose generators ψβ : Sk+1 → X for πk+1(X). Let Zk+1 = Yk+1∨βSk+1
β .

fk+1 extends to Zk+1 by setting it equal to ψβ on Sk+1
β . These archieve the

surjectiveity, and set Z = ∪Zn.

Corollary 6.2. Any X has an f : Z → X where Z is CW and f is an isomor-
phism on all homotopy groups.

Proof. Set A = pt and n = 0.

Definition 6.2 (Eilenberg-MacLane Space). Let G be a group. A space K =
K(G,n) is an Eilenberg-MacLane space if πk(K) = G for k = n and 0 else.

˜K(G, 1) is contractible. G acts on this space freely and properly. So to
construct a K(G, 1), we need to find a contractible space on which G acts freely
and properly.

K(Z, 1) = R/Z = S1, K(Zn, 1) is the n-torus, K(Z/2, 1) = RP∞.
Look at the generalized Hopf fibration S1 → S2n+1 → CPn. The LES of a

fibration gives πi(S1)→ πi(S2n+1)→ πi(CPn)→ πi−1(S1).

12



Taking these in increasing n, we get πi(CP∞) = 0 for i > 2. And also,
π1(CP∞) = 0 and π1(CP∞) = Z from the LES. So CP∞ = K(Z, 2).

We will see that Ȟn(X,G) ∼= [X,K(G,n)] as groups.
Why is this a group? (on the right)

Theorem 6.3. For any group G, K(G, 1) exists. For any abelian group G,
K(G,n) exists for any n.

Proof. Exactly the same as the proof of the cellular approximation tehorem.
Take generators for G, gα, to form Zn = ∨Snα, etc

Let X = K(G,n). Look at the fibration ΩX → PX → X. Then we have
πk+1(PX)→ πk+1(X)→ πk(ΩX)→ πk(PX), so we have πk+1(X) ' πk(ΩX),
and thus ΩX is a K(G,n− 1).

So then above, [X,K(G,n)] = [X,ΩK(G,n + 1)] = [X,ΩΩK(G,n + 2)] =
[X,Ωk(n+ k)].

Let H be an infinite dimensional complex Hilbert Space. Then S(H) is the
Sphere in H, and it is contractible. H = L2([0, 1]), and ξ0(x) = 1, ξ0 ∈ S(H).
Look at U(1)→ S(H)→ CP(H).

Definition 6.3 (Double Complex). A double complex is a collection of objects
Cp,q such that the ”rows” (with q fixed) are complexes with differential d and the
columnes (with p fixed) are complexes with differential δ such that dδ + δd = 0,
and p, q ≥ 0.

Define Totn(C) = ⊕p+q=nCp,q and D = d+ δ a map from Totn → Totn+1,
the total complex. H∗(TotC) = H(C).

Let C be a double complex. Add obkects Ai to the ith row such that the
rows are exact and Ai → C0,i is an inclusion. Assume that the rows are exact.
Then H∗(A) ' H∗(TotC).

Proof by diagram chase.

7 Lecture 8

Next time, Jason Devito will speak about Framed Cobordism and homotopy
groups.

Definition 7.1 (Cobordism). Two compact manifolds M1, M2 are called cobor-
dant if thereexists a compact manifold W with ∂W = M1

∐
M2.

If M1 and M2 are oriented, then want W oriented and ∂W = M1

∐
M̄2.

Cobordism is an equivalence relation, and define Nk = the group of dimen-
sion k cobordism classes of manifolds.

[M ] + [N ] = [M
∐
N ], and [M ] + [M ] = [M

∐
M ] = [∂M × I] = 0.

Proposition 7.1. M
∐
N is cobordant to a connected manifold.

Proof. In fact, claim that M
∐
N is cobordant to M#N .
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Now back to Spectral Sequences...

Proposition 7.2. Let Cpq be a double complex with δ the horizontal and d the
vertical differentials. Let Ci be a complex to the left of it mapping in horizontally
(an augmented complex) such that we can augment again by 0 to make the rows
exact, then ε : (C, d)→ Tor(C,D) induces an isomorphism on cohomology.

Proof. Let C ∈ Torn(C,D), then c = cn + cn−1 + . . .+ c0 and Dc = 0. Diagram
chase.

Varations: Other quadrants.
If we have a third and fourth quadrant complex, how do we form Tot? If we

want this lemma, we take product rather than sum.
From Spectral Sequences, DeRham’s Theorem is easy:
First, we do Cech Cohomology.

Definition 7.2 (Cech Cohomology). Let X be a space and U = {Uα} a cover
of X. Define Čq(U) = {f(αi0 , . . . , αiq ) ∈ R with f antisymmetric and equal to
zero if Ui0 ∩ . . . ∩ Uiq = ∅. This gives a complex. We then take Ȟq(X,R) =
lim←−H

r(Č(U , R)), where the limit is over all covers.

We will prove the deRham Theorem:
Let M be a manifold and suppose that U is a locally finity cover.
Let λα be a partition of unity subordinate to U . Then 0 → Ωq(M) ε→∏

α0
Ωq(Uα0)→ ordα0<α1 Ωq(Uα0 ∩ Uα1)→ . . ..

Define (δω)α0,...,α`+1 =
∑`+1
i=1(−1)iωα0,...,α̂i,...α`+1 |Uα0,...,α`+1

Also define ε(ω)α0 = ω|Uα0
. Note that δ2 = 0.

Lemma 7.3 (Poincare Lemma). Let U ⊂ M be diffeomorphic to a ball in Rn.
THen Hi(Ω∗(U), d) ' R if i = 0 and 0 otherwise.

Let M be a manifold, cover M by Uαi such that their intersections are all
diffeomorphic to balls in Rn. Can’t do this for all manifolds (ie, Long Line),
but can for compact ones.

Take the double complex Cpq =
∏
α0,...,αp−1

Ωq−1(Uα0,...,αp−1) with vertical
maps d and horizontal maps (−1)pδ.

We can augment this complex by Ωi(M), and so H∗(Ω∗M,d) ' H∗(Tot ČΩ)
and we can augment below by p copies of R, and these are exact by Poincare,
and so we have the deRham Theorem.

Ext
Let R be a ring and M,N two left modules, then ExtR(M,N) is defined by

taking a projective resolution of M , taking hom(−, N) with this resolution, and
then taking cohomology. Hi of this complex is ExtiR(M,N).

We can also define it with an injective resolution of N , in precisely the same
way.

Theorem 7.4. Ext∗R(M,N) is independent of what projective or injective res-
olution you take or which type you take.
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Proof. Let P ∗ →M and N → I∗ be projective and injective resolutions. Double
complex Cpq = hom(P p−1, Iq−1), and augment on left by hom(P i, N) and below
by hom(M, Ij).

Let G be a group, M a G-module and Ci(G,M) = {ϕ : Gi → M} as in
Cech Cohomology.

Theorem 7.5. Let G be a group, R a ring trivial as a G-module. Let X be a
CW-complex which is a K(G, 1), then H(G,R) ' H(X,R)

8 Lecture 9

Our goal today is a theorem of Pontryagin:

Theorem 8.1 (Pontrjagin). Mn+k compact with no boundary (closed). There
is a one to one correspondence between [Mn+k, Sk] and framed compact sub-
manifolds Nn ⊂Mn+k modulo framed cobordism.

Definition 8.1 (Cobordism). The manifolds Nn, (N ′)n ⊂Mn+k are cobordant
if N × [0, ε) and N ′ × (1 − ε, 1] can be extended to a manifold X ⊂ M × [0, 1]
such that ∂X = N × {0} ∪N ′ × {1}.

Definition 8.2 (Framing). A framing of N ⊂ M is a trivialization of the
normal bundle of N in M .

Notationally, (N, v) where v = (v1(x), . . . , vk(x)) for x ∈ N , v is a basis of
(TxN)⊥.

So a framed cobordism is a cobordism X with a framing w with w|∂X is v
or v′.

Notationally, we will almost always omit the framing as understood.
To define ϕ : [Mn+k, Sk] →framed submanifolds modulo framed cobordism

we take [f ] and choose a representative f . We choose a regular value y ∈ Sk of
f , then f−1(y) is a compact n-manifold called the Pontrjagin Manifold of f .

Choose an oriented basis w1, . . . , wk of TySk. Then for x ∈ f−1(y), (dxf) ·
Txf

−1(y)⊕ (Txf−1(y))⊥ → TyS
k, then the restriction dxf |Txf−1(y) ≡ 0.

So dxf : (Txf−1(y))⊥
∼=→ TyS

k. Let vi = (dxf)|−1
(Txf−1(y))⊥

(wi).
So we must check that ϕ is well defined. That it is independent of choice of

basis, for z a regular value near y, we should have f−1(y) ∼ f−1(z), if f ' g
and y is a common regular value, then f−1(y) ∼ g−1(y), and y, z regular implies
that f−1(y) ∼ f−1(z).

For the first one, if we let w and u be two choices of positively oriented
bases TyS

k, then w, u ∈ GL+(k) where GL+(k) is connected, and so path
connected. Let γ : [0, 1] → GL+(k) by w for [0, ε) and u for (1 − ε, 1]. Then
(f−1(y), f∗w) ∼ (f−1(y), f∗u) via X = (f−1(y)× [0, 1], f∗γ(t)).

For the second, we must first define ”near”. By Sard’s Theorem, there exists
U ⊂ Sk, y ∈ U , such that ∀x ∈ U , x is regular.

15



WLOG, let U = {x|‖y − x‖ < ε} and assume that z ∈ U . Choose a one
parameter family of rotations rt such that r1(y) = z and rt = id for t ∈ [0, ε),
and rt = r1 for t ∈ (1− ε, 1]. Then r−1

t (z) lies on the great circle from z to y.
Let F : M × [0, 1] → Sk by F (x, t) = rt ◦ f(x), as z is a regular value of

f , it is for F . Thus (F−1(z), F ∗v) is a framed cobordism between f−1(z) and
f−1(y).

Assume that f ' g and y is regular for both. Choose a homotopy F (x, t)
which is f(x) for t ∈ [0, ε) and g(x) for (1− ε, 1]. By Sard’s Theorem, there eis
a z regular for F near y. We know that f−1(y) ∼ f−1(z) and g−1(y) ∼ g−1(z)
and F−1(z) is a framed cobordism between f−1(z) and g−1(z).

Let y, z be regular values of f and let rt be the rotation r1(y) = z, with
rt = id for t ∈ [0, ε) and rt = r1 for (1− ε, 1]. Then F (t, x) = rt ◦ f(x). And so
f−1(z) = F−1(z) ∼ F−1(z) = (r1 ◦ f)−1(z) = f−1 ◦ r−1

1 (z) = f−1(y).
We will need the following to proceed:

Lemma 8.2 (Product Neighborhood Theorem). If Nn ⊂ Mn+k and N is
framed, then there exists V ⊂M open with N ⊂ V such that V ∼= N ×Rk such
that h(n, v) = n.

SHOWING BIJECTION

9 Lecture 10

Spectral Sequences:
References: Hatcher has notes towards a book on Spectral Sequences on his

website.
Book by McCleary ”User’s Guide to Spectral Sequences”

Definition 9.1 (Spectral Sequence). A spectral sequence is a sequence of com-
plexes (E1, d1), (E2, d2), . . . such that En = H∗(En−1, dn−1).

A morphism of spectral sequences fn : (En, dn) → (Fn, ∂n) has fn+1 =
H(fn).

Basic way to construct spectral sequences:

Definition 9.2 (Exact Couple). An exact couple is (A,B) two groups with
i : A→ A, j : A→ B and k : B → A where ker j = Im i.

Define A′ = i(A). On B, dfefine d = jk, then d2 = jkjk = 0. Set B′ =
H∗(B, d) = ker f/ Im d.

Then we have A′ i
′

→ A′
j′→ B and so we define i′(i(a)) = i(i(a)) and j′(i(a)) =

j(a) are well defined. Thus j(a) = j(a′) + jkb.
Define k : B′ → A′ by k′([b]) = kb for b ∈ B with db = 0. So now db = 0

implies that jkb = 0 which means kb ∈ ker j, and so kb ∈ Im i ∈ A′. And if
b = db′ = jkb′ then kb = kjk′b′ = 0.
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Proposition 9.1. Given an exact couple

A A

B

................................................................................................................. ............
i

............................................................................................................................
....
............

j

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........................

k

, it’s derived couple

A′ A′

B′

................................................................................................................. ............i′

............................................................................................................................
....
............

j′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............................

k′

is exact.

The proof is a diagram chase.
So given an exact couple (A,B), set (A1, B1) to be the derived couple, and

continue. So (Bn, dn) form a spectral sequence.
Let X0 ⊂ X1 ⊂ . . . be a filtration of a space X. For any p we have →

Hk(Xp, Xp−1) → Hk(Xp) → Hk(Xp−1) → Hk+1(Xp, Xp−1) → . . .. Arrange
this in the patter with columns Hk(Xp) with p increasing down the column
and k constant and rows Hk−2(Xp−1) → Hk−1(Xp, Xp−1) → Hk−1(Xp) and
continuing.

Let (C∗, d) be a cochain complex. A filtration on (C, d) is C∗ = F0 ⊃ F1 ⊃
F2 ⊂ . . . where (Fi, d) are subcomplexes. We set F−k = C∗. So now we set
A =

(
⊕∞p=−∞Fp, d

)
.

So 0→ Fp1 → Fp → Fp/Fp+1 → 0 is an exact seuqence of complexes. Thus
there exists a long exact sequence Hk(Fp+1)→ Hk(Fp)→ Hk(Fp/Fp+1)→ . . ..

We define i : A → A to be the sheaf operator. So we have 0 → A → A →
coker i → 0. We start with an exact complex A0 = H∗(A), B0 = H∗(coker i)
and we have a map i0 : A0 → A0 given by i0 = H∗(i) and a map j0 : A0 → B0

given by j0 = H∗(j). So then we get an exact couple using δ : Hk(coker i) →
Hk+1(A).

So now C∗ = F0 ⊃ F1 ⊃ . . . with H∗k = ImH∗(Fk)→ H∗(C∗) this defines a
decreasing filtration of H∗(C)...

Theorem 9.2. Let p : Y → X be a serre fibration with π1(X) = 0 and fiber
F . Then there exists a first quadrant cohomological spectral sequence where
Epq2 = Hp(X,Hq(F ))⇒ (converging to) H∗(Y ).

We have a map dr : Epqr → Ep+1,q−r+1
r with d2

r = 0, and first quadrant
meants p or q < 0 implies Epq2 = 0.

Definition 9.3 (Vanishes for Trivial Reasons). A homomorphism f : A → B
vanishes for trivial reasons if either A = 0 or B = 0.

For an example, lets take S1 → S2n+1 → CPn, the Hopf Fibration. This
theorem says that Epq2 = Hp(CPn, Hq(S1)) which gives us a pair of horizontal
rows which are the cohomology of CPn and all others zero. After the first page,
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the only nonzero entries are the second row, and they are of the form ker d2,
and all maps vanish for trivial reasons, so the spectral sequence stabilizes, that
is, E3 = E4 = . . .. We call the stabilization E∞.

If the world were just, ⊕p+q=nEpq∞ = Hn(Y ). It’s not generally true, but it
IS true rationally.

Suppose that A,B are abelian groups with filtrations A ⊃ F ∗ and B ⊃ G∗

with f : A→ B compatible with the tibration. Is it true that grf : grA→ grB
is an isomorphism implies that f : A→ B is?

10 Lecture 11

Last time, we looked at exact couples like

A1 A1

E1

................................................................................................................. ............
i1

.....................................................................................................................
....
............

j1
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........................

k1

From this, we got a derived exact couple, and could continue.
Let A = F0A ⊃ F1A ⊃ . . . a filtration, and look at GrF A = ⊕FpA/Fp+1A.
Often, we will be sloppy and replaces FkA by Fk even if it causes confusion.
A map of filtered objects is f : A→ B such that f(FkA) ⊂ FkB.
When f is a filtered morphism, it induces a morphism Gr(f) : GrF A →

GrF B.

Lemma 10.1. If A,B are filtered abelian groups and f : A → B is a filtered
map and the filtrations are bounded (only finitely many terms) then if Gr(f) is
an isomorphism, so is f .

Proof. Duppose that FkA = 0 for all k ≥ N + 1. Then we know that FNA is
the last nonzero term, and we have isomorphisms for each term of GrF A. Then
as Fn+1A = 0, we have f : FNA→ FNA is an isomorphism.

Then we have short exact sequences

0→ FNA→ FN−1A→ FN−1A/FNA→ 0

and are given a morphism of them. We know it is an isomorphism in the right
by hypothesis, and have proved that it is in the center, and so by the short five
lemma, it is on the left, and so, by induction, we have isomorphisms of all the
graded parts.

Examples of filtered complexes:
If X is a spce, then ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn (when a CW-complex),

we define in teh singular cochain complex a filtration FkC∗(X) = ker{C∗(X)→
C∗(Xk+1)}.

If C = (C∗∗, d, δ) is a doubel complex, then TotC has a filtration given by
Fk Totn C = ⊕p+q=n,q≥kCpq.
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In both cases, we get an exact couple and a spectral sequence. Recall that
first E1 = H∗(GrF (C∗)).

For a double complex, we get Epq2 = Hq(H∗(Cp∗, d), δ).

Theorem 10.2 (Serre). Given a Serre fibration F → Y
p→ X with π1(X) =

0, there exists a spectral sequence with Epq2 = Hp(X,Hq(F )) which abuts to
Hp+q(Y ).

This is in fact a multiplicative spectral sequence, that is, H∗(Y ) is an algebra,
H∗(X;H∗(F )) is an algebra, and the dr are graded derivation.

So now we continue our study of the cohomology of U(n).
H∗(U(1),Z) ' Λ∗Z(x), |x| = 1, that is, Λ∗Z(x1, . . . , xn) is the free graded

commutative algebra with generators x1, . . . , xn.
For Λ∗Z[x] with |x| = 2k, we have |xn| = 2nk and so we have Z[x]. For

x = 2k + 1, we get Z[x]/(x2 = 0).
For ΛZ(x1, x2, x3) with |xi| = i. We will list monomials by degree. For

deg = 0, we have 1, for deg = 1 we have x1, for deg = 2 we have x2, for deg = 3
we have x3, x1x2 for deg = 4, x2

2, x1x3 and in deg = 5, have x1x
2
2, x2x3.

We have U(1) → U(2) → U(2)/U(1) = S3, and H∗(S1 = U(1)) = Λ(x1)
with |x1| = 1 and H∗(S3) = Λ(x3) = Λ(x3) with |x3| = 3.

The spectral sequence degenerates and tells us that H∗(U(2)) = ΛZ(x1, x3).
Now we look at U(2) → U(3) → S5, and we could compute this. However,

rather than do it directly, we will use the fact that this is a multiplicative spectral
sequence.

We redraw the spectral sequence with generators. d5(x1) = d5(x3) = 0 for
trivial reasons, and so d5(x1x3) = dx1 · x3 − x1dx3 = 0, and so H∗(U(3)) =
Λ(x1, x3). In general, H∗(U(n)) = ΛZ(x1, x2, . . . , x2n+1).

11 Lecture 12

Some examples of calculations.
ΩS3. We have a fibration ΩS3 → PS3 → S3. PS3 is contractible. This

gives us Epq2 = Hp(S3, Hq(ΩS3)). We know that Epq∞ is zero except if p =
q = 1 when it is Z. We also have E2 = E3 and E4 = E∞. So we must have
H0(S3, H2(ΩS3)) ' H3(S3) because the differential is injective (because the
term doesn’t survive) and surjective. So the cohomology of ΩS3 is Z in even
degree and 0 in odd degree. These are the same cohomology groups as CP∞.
Are they homotopic?

And now we want to calculate the cohomology ring. We know H∗(S3) =
ΛZ(x) with |x| = 3.

So now replacing groups by their generators, we have the first column as
1, 0, y2, 0, y4, . . . and the fourth as x, 0, xy2, . . .. So the question is, what is the
relationship between y2

2 and y4? We know that d3y4 = xy2 (we choose generators
such that this is true), and d2(y2

2) = (d3y2)y2 + y2(d3y2) = xy2 + y2x = 2xy2,
and so y2

2 = 2y4.
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Similarly, there is a y6 ∈ H6(ΩS3), and dy6 = xy4. And d(y3
2) = 3y2

2dy2 =
3y2

2x = 6y4. So y3
2 = 6y6. So we have the ring Z[y, y2/2, . . . , yn/n!, . . .] with

|y| = 2. This is called the divided power ring.
Now we try with ΩS2. Then we have Epq2 = Hp(S2, Hq(ΩS2)). The first

column is Hi(ΩS2) and the second column is zero, with the third being H2(S2).
Note that after E2 differentials, all diffs vanish for trivial reasons, and so

E3 = E∞. This page must have zeroes except in 1,1 and thus we have isomor-
phisms everywhere else, and so we have Z’s all the way up.

Now we have yi generates Hi(ΩS2), and dy1 = x, dy2 = xy1 and y2
1 = 0.

Note |x| = 2. d(y1y2) = dy1y2 − y1dy2 = xy2 − y1xyz = xy2. So y1y2 = y3.
Also, y2

2 = 2y4, and so H∗(ΩS2) = ΛZ(y1, y2, y2
1/2!, y3

2/6!, . . .).
There are in fact Homology Spectral Sequences. There is one by Serre:
Let F → Y → X be a fibration. Then E2

pq = Hp(X,Hq(F ))⇒ H∗(Y ) with
differentials dr : Erpq → Erp−q,q+r−1.

We knwo that π1(X)/[−,−] = H1(X). for all X.
Step 1: Prove that if π0(X) = π1(X) = 0 then π2(X) = H2(X). Look at

ΩX → PX → X. By the Serre Spectral Sequence, whatever happens after
the first step lasts forever, and so f : H2(X) → H0(X,H1(ΩX)) = H1(ΩX) =
π1(ΩX)/[−,−] = π2(X). is an isomorphism.

So now we assume that we know πk(X) = 0 for k < n. Then πk(X) ' Hn(X)
for all X. Then let Y be a space such that πk(Y ) = 0 for all k < n+1. Apply the
Serre sequence to ΩY → PY → Y . Then there is a map Hn+1(Y ) → Hn(ΩY )
which must be an isomorphism and is πn(ΩY ) = πn+1(Y ).

Back to the theory:
Let (C, d) be a complex, and C = F 0C ⊃ . . . a filtration of complexes. The

spectral seqeunce was constructed from the exact couple A1 = ⊕p∈ZH
∗(F p(C))

by extending F pC = C for p < 0 with i : A1 → A1 the shift induced by
H∗(F pC)→ H∗(F p−1C) and E1 = H∗(GrF C). Suppose the filtration is short.
That is, F 3C = F 4C = . . . = 0.

Let’s start deriving the exact couple.
Then we get 0 → H∗(F 2C) → H∗(F 1C) → H∗(F 0C) → . . . with all the

maps after F 0 isomorphisms. Then A1 is the direct sum of these.
A2 is the direct sum of 0 → iH∗(F 2C) → iH∗(F 1C) → H∗(F−1C) → and

isomorphisms.
Then A3 is the direct sum of 0 → iH∗(F 1C) → H∗(F−1C) → isos. i is an

injection in each of them.
So at A3 all the maps are inclusions.

Lemma 11.1. If A i→ A
j→ E

k→ A is an exact couple with i an inclusion, then
the derived couple is the same thing and E = A/iA.

So we have 0→ A
i→ A→ E → 0 a short exact sequence.

So A3 = A4 = . . .. So E3 = E∞ = GrF H∗(C) where F is the filtration on
H∗(C) given by F p(H∗(C)) = ImH∗(FP (C))→ H∗(C).
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Theorem 11.2. Given a filtration on (C, d) there exists a spectral sequence
Epq1 = Hp+q(F pC/F p+1C) and if the filtration restricted to each Ck is bounded,
then this Spectral Sequence ⇒ H∗(C). That is, Epq∞ = GrpHp+q(C).

Consider R. Filter R by Xn = (−∞, n). Let C∗R be the singular cochain
complex, then F pC∗ = ker(C∗(R)→ C∗(Xn)). So Epq1 = H∗(Xn, Xn−1) = 0.

But H∗(R) = Z if ∗ = 0 and 0 else. So convergence of a spectral sequence
isn’t literal.

Corollary 11.3. Suppose C∗, D∗ are filtered complexes and f : C → D a
filtered map. Then if fr : Er(C) → Er(D) is an isomorphism, then fs is an
isomorphism for s > r and f∞ : E∞(C) ' E∞(D) and f : H∗(C)→ H∗(D) is
an isomorphism.

The Serre Spectral Sequence is functorial.
If F → Y → X is a fibration, and f : Z → X a map, then f∗Y = Z×X Y →

Z is a fibration with fiber F and f induces a map of Serre sequences. So
fr : Epqr (Y → X)→ Epqr (f∗Y → Z).

Now we look at Map(S1, X). The cohomology of this space is useful for
constructing closed geodesics on Riemannian manifolds.
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So we were looking at ΩS3 →Map(S1, S3)→ S3, and using the Serre spectral
sequence. For Epq2 , we have alternating Z’s and 0’s in the first and fourth
columns, and zeros everywhere else, and so E2 = E3 for trivial reasons. We
must compute d3.

We note that this gives a long exact sequence on homotopy gorups, so we
have πk(ΩS3) → πk(Map(S1, S3)) → πk(S3) → πk−1(ΩS3) → . . ., and also
note that this fibration has a section s(x) = cx, the constant map S1 → S3, and
so this long exact sequence splits.

So we have 0 → πk+1(S3) → πk(Map(S1, S3)) → πk(S3) → 0, and so
πk(Map(S1, S3)) = πk(S3) ⊕ πk+1(S3). In particular, π2(Map(S1, S3)) =
π2(S3) ⊕ π3(S3) = Z. And so H2(Map(S1, S3)) = Z, which implies that
H2(Map(S1, S2)) = Z. This says that, as H2(Map(S1, S3)) = Z, we have
to have a Z persisting, and so d3 = 0 from E2,0

3 → E3,0
3 , and so looking at

generators, d3(x) = 0, and so d3 = 0 for all parts.
Thus, E∞ ' Λ(x, x2/2, x3/3!, . . . , y) where |x| = 2, |y| = 3.
For the S2 case, we have Z in each dimension and a Z’s and zeros in the third

column, but otherwise the same, with generators, 1, x, z, xz, z2/2!, xz2/2!, . . .
generate the first column, and y, xy, zy, . . . in the third. So d2(x) = 0, because
H1 = Z, and so it must persist. d2(z), however, can’t be found this way.

We will use the functoriality of the spectral sequence to get this. We have
a natural map ∆ : S2 → S2 × S2. From this and Kunneth Formula, we get a
spectral sequence with the same first column, third colum generated by y⊗1, 1⊗y
and products with x, and fourth column similarly with y ⊗ y. So d2(x) =
y⊗ 1− 1⊗ y, which goes to zero when we take it back to our original sequence.
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So now we must look at d2(x(y⊗ 1))− y⊗ y and d2((y⊗ 1)X) = y⊗ y, and
so x(y ⊗ 1) + (1⊗ y)x is in the kernel.

Now d2(z) = xy⊗ 1 +x1⊗ y. And so, mapping back to the original spectral
sequence, we have z = ∆∗z, and so d2(z) = d2(∆∗z) = ∆∗d2(z) = ∆∗(xy ⊗ 1 +
x1⊗ y) = 2xy

12.1 Postnikov Tower

This is a ”dual decomposition” to a cell decomposition (not exactly, though,
but similar role with fibrations that CW complexes do with cofibrations)

Proposition 12.1. Given a space X, there exists

X X1

X2

X3

...

................................................................................................................. ............
f1...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

f2

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...................
............

f3

..............................................................................................................
...
.........
...

π4

..............................................................................................................
...
.........
...

π3

..............................................................................................................
...
.........
...

π2

such that the πk are fibrations with fibers K(πk(X), k) with fk : X → Xk is
(k−1)-connected (that is, it is an isomorphism of homotopy groups of dimension
up to k)

Proof. To build this, fix n. Then take X
f(n)→ X(n) by killing the homotopy in

degree > n by adding cells of degree > n+ 1.
Construct X(n−1) by adding cells of degree n to X(n) to kill homotopy, we

have inclusion X(n) → X(n−1) by the standard construction, we can make this
a fibration.

Now we add cells to X(n−1) to kill πn−1, and get X(n−2), etc.

Proposition 12.2. H∗(K(Q, n),Q) ' H∗(K(Z, n),Q) ' ΛQ(x), |x| = n.

Proof. K(Z, 1) = S1, and so H∗(K(Z, 1), QQ) = H∗(S1,Q) = Λx, |x| = 1.
Assume that H∗(K(Z, n),Q) = ΛQx, |x| = n. Then we have a fibration

ΩK(Z, n+ 1) ' K(Z, n)→ PK(Z, n)→ K(Z, n+ 1).
If n is even, then we get a spectral sequence which on the first nontrivial

page takes x, the generator of E0,2 to y the generator of Hn+1(K(Z, n),Q). So
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dxk = kxk−1y, and so we have isomorphisms and get Λy. A similar argument
works for n odd.

Recall the following:

Theorem 12.3. Given a filtered complex (C, d) with C = F 0C ⊃ F 1C ⊃ . . .
there exists a spectral sequence with Epq1 = Hp+q(GrpF (C)). If the filtration is
locally bounded, then it converges to H∗(C).

SetApq1 = Hp+q(F p(C)) and Epq1 = Hp+q(GrpF (C)) with i : Apq1 → Ap−1,q−1
1 ,

j : Apq1 → Epq1 adn k : Epq1 → Ap+1,q
1 . Then we have dr : Epqr → Ep+r,q−r+1

r .
Define the filtration by F p+1 = C(X,Xp), so then Epq1 = Hp+q(Xp, Xp−1) '

⊕Z over eλ the p-cells for p+ q = p and 0 else.
Now let p : Y → X be a fibration, X path connected. Then filter Y by

Y k = p−1(Xk). The serre spectral sequence is the spectral sequence of the
filtration F kC∗(Y ) = ker(C∗(Y ) → C∗(Y k)), and so Epq1 = Hp+q(Y p, Y p−1).
Next time, we will computer E2.
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We are going to compute π4(S3).
Working out the Postnikov tower for S3, X1 = X2 = 0, X3 = K(Z, 3) and

X4 = K(G, 4) for some G = π4(S3). This is what we want to calculate.
We take the spectral sequence on homology with

E2
pq = Hp(K(Z, 3), Hq(K(π4(S3)), 4)))

The H2 page has the form

π4(S3) 0 0 π4(S3)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Z 0 0 Z H4(K(Z, 3),Z) H5(K(Z, 3),Z)

So then Hk(X4) ' Hk(S3) = 0 for k = 4, 5, as X4 = S3 ∪p≥6 e
p
λ.

The only nontrivial differentials are d4, d5. Now d5 must be an isomor-
phism, so π4(S3) = H5(K(Z, 3),Z), so we must merely compute the homology
of K(Z, 3).

We have K(Z, 2) → PK(Z, 3) → K(Z, 3) a fibration. Using the spectral
sequence on cohomology given by Serre, we have Epq2

Zx3

0
Zx2

0
Zx Zxy
0
Z 0 0 Zy H4 H5 H6
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So d3(x) = y and so d3(x2) = 2xdx = 2xy, so H4 = 0.
Now we look at the E4 level, and to determine it, we analyze d3 : Zxy → H6.

0
0
0 0 0 G
0 0 0
Z 0 0 0 0 H5 H6

If d3 is the zero homomorphism, then G = Z/2, but this would live to E∞,
and so d3 is surjective, and so H6 = Z/2Z, and so H5(K(Z, 3),Z) = Z/2Z =
π4(S3).

13.1 Whitehead Towers

Proposition 13.1. Given a connected CW-complex there exists a diagram with
fi fibrations with a tower iX ← K(πi(X), i− 1) and iX → i−1X with 0X = X
such that kX → X induces an ismorphism on πj for j > k and πj(jX) = 0 for
j ≤ k.

Theorem 13.2 (Serre). πj(Sn) is torsion iff n even, j 6= 2, 2n − 1 or n odd
and j 6= n.

Look at the first step of the Whitehead tower K(πn(Sn), n−1)→ nX → Sn.
Then we have πj(nX)→ πj(Sn) is an isomorphism for j > n.

Last time we calculated H∗(K(Z, n− 1)) ' ΛQ(x) with |x| = n− 1.
So we have

Q 0 . . . 0 Q
...

...
Q 0 . . . 0 Q

So the only nontrivial differential is Qx→ Qy, and dx = y. If n− 1 is odd,
then H2n−1(nX,Q) = Q and is zero otherwise.

And so Hk(nX,Q) = 0 for all k if n is odd...?

Theorem 13.3. If π1 = 0 and πk(X) ⊗ Q is 0 for k ≤ n then Hk(X,Q) = 0
for k < n and πn(X)⊗Q ' Hn(X,Q)

How to get the Serre Spectral Sequence:
Let p : Y → X be a Serre fibration with fiber F . Then p−1(x) ' p−1(y) for

all x, y and assume that π0(X) = ∗. Then we get a map π1(X,x)→ homotopy
equivalences of p−1(x0).

Assume that π1(X,x0) acts trivially on H∗(F ), take X and filter it by its
skeleton, and set Yk = p−1(Xk).

We get a filtration on C∗(X), and so the spectral sequence has Epq1 =
Hp+q(F p/F p+1) = Hp+q(Yp, Yp+1).

So now let’s compute. There exists a commutative diagram
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Hp(Xp, Xp−1)⊗Hq(F )Hp+1(Xp+1, Xp)⊗Hq(F )

Hp+q(Yp, Yp−1)Hp+q+1(Yp+1, Yp)

.............................................................................................................................................................
d1 ⊗ 1

...................................................................
d1

..............................................................................................................
...
.........
...

∼

..............................................................................................................
...
.........
...

∼

Where d1 is the differential in the spectral sequence for filtration of X by
skeletons. Look at a p-cell epλ ⊂ Xp and it is attached by a map ψλ.
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Epq1 = Hp+q(Yp, Yp+1), and d : Epq → Ep+q+1. Let F → Y → X be a fibration.
Let F → D̃n → Dn be a fibration.

Then we want Hk(D̃n, ˜∂D
n
). As Sn−1 = ∂Dn = Dn−1

+ ∪Sn−2 Dn−1
0 , and

this is still true if we take D̃n.
Claim: Hk(Dj

+, S
j−1) = Hk−1(Dj−1

+ , Sj−2).
Look at the triple (Dj

+, S
j−1, Dj−1

− ).
The long exact sequence we get is then Hk(D̃j

+, S̃
j−1)→ Hk(D̃j

+, D̃
j−1
− )→

Hk(S̃j−1, D̃j−1)→ . . ..
So then Hk(Sj−1, Dj−1

− ) ' Hk(Dj−1
+ , Sj−2) by excising (Dj−1

− \ Sj−2).
And so we have Hk(D̃n, S̃n−1) ' . . . ' Hk−n(FD0

+
)

So by excision, we get

Hp+q(Yp, Yp−1) '
∏

p−cells

Hp+q(ẽpλ, ∂̃e
p

λ) '
∏

p−cells

Hq(F )

So the bottom row computes the CW-cohomology of X with coefficients in
Hq(F ). The face that we don’t have to worry about the isomorphisms is because
the fundamental group acts trivially.

Thus used the hypothesis that π1(X) acted trivially on H∗(F ).
Define a presheaf by taking U 7→ Hq(π−1(U)) and we can sheafify to get a

sheaf, call it Hq, locally constant.
There is a more general statement: Epq2 = Hp(X,Hq)⇒ Hp+q(Y ).
A locally constant sheaf is also called a local system.

Theorem 14.1. The following are equivalent notions:

1. A homomorphism p : π1(X)→ GL(V ) where V is a k-vector space

2. Local systems with stalk V

3. Vector bundles whose fiber is V together with a flat connection.

This is called the Riemann-Hilbert Correspondence.
Now recall the Whitehead Tower.
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Theorem 14.2 (Serre’s Theorem). For n odd, πk(Sn) is torsion iff k 6= n and
for n even, πk(Sn) is torsion iff k 6= n, 2n+ 1.

For n odd, we have Sn ← Xn ← K(πn(X), n− 1) = K(Z, n− 1).Taking the
rational cohomology in the spectral sequence, we see that H∗(Xn,Q) = 0.

As πn+1(Xn) ' Hn+1(X), we have that πn+1(Xn)⊗Q ' H̃n+1(Xn,Q) = 0,
and so πn+1(Xn) is torsion, and equal to πn+1(Sn).

So now H∗(Xn+1,Q) = 0, so πn+2(Xn+1) = Hn+2(Xn+1), which is torsion.
Etcetera.

Now, we move on.
Look at the Postnikov tower for S3. Spectral Sequences give you H5(X4) =

Z/2, and H5(X4) = π5(X4) = π5(S3).
We see that in general Z/p contributes a p-torsion in π2p(S3).
Now we will start with Bundle Theory.

Definition 14.1 (Fiber Bundle). π : Y → X is a fiber bundle with fiber F if
for all x ∈ X, there exists U 3 x and a homeomorphism π−1(U)→ U × F with
this map commuting with the projections to X.

Let (Uα, φα) be a covering of X such that φα : π−1(Uα)→ Uα×F is homeo.
We call this a trivializing cover.

For α, β with Uα ∩ Uβ 6= ∅, look at Uα × F
φ−1
α→ π−1(Uα) and restrict,

we get (Uα ∩ Uβ) × F
φ−1
α→ π−1(Uα ∩ Uβ)

φβ→ (Uα ∩ Uβ) × F . Then we have
φβ ◦ φ−1

α : (Uα ∩ Uβ) × F → (Uα ∩ Uβ) × F . This takes (x, f) → (x, gβα(x)f),
and so we get a map gβα : Uα ∩Uβ → Homeo(F ), which is a topological group.
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Definition 15.1 (Fiber Bundle). A fiber bundle (E,X, π) with π : E → X
with fiber F given x ∈ X there exists U 3 x and φ : π−1(U) → U × F is a
homeomorphism over U .

Definition 15.2 (Section). A section of a fiber bundle is a continuous map
s : X → E such that πs = 1X . Let Γ(X;E) be the space of sections.

Definition 15.3 (Morphism). A morphism is a commutative diagram

X

E1 E2
............................................................................................................................ ........

....

π1

........................................................................................................................
....
............

π2

................................................................................................................. ............
φ

An isomorphism of bundles is a bundle morphism that is a homeomorphism.

Given a trivializing cover of π : E → X, Uα a cover of X and ψα : π−1(Uα)→

Uα × F we can form (Uα ∩ Uβ)× F
ψ−1
β→ π−1

α (Uα ∩ Uβ)
ψα→ (Uα ∩ Uβ)× F , then
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ψαψ
−1
β (u, f) = (u, gαβ(u)f), and gαβ satisfy a cocycle relation. gαβgβγ = gαγ ,

where gαβ : Uα ∩ Uβ → Homeo(F ). Also require gαα = 1F .
(this is Map(X,Map(Y,X)) 'Map(X × Y, Z))
Conversely, given a cover Uα and a map gαβ : Uαβ → Homeo(F ) such that

gαα = 1 and gαβgβγ = gαγ , we can construct a fiber bundle.
Let E =

∐
α Uα × F/ ∼ where (x, f) ∈ Uα × F and x ∈ Uαβ we have

(x, f) ∼ (x, gαβ(x)f).
Fact: π : E → X by π(x, f) = x.
This quotient is a well defined fiber bundle due to the cocycle condition.
Fiber bundles with structure group:
Let G be a topological group. Assume fixed, an action of G on a space F :

F ×G→ F such that (fg1)g2 = f(g1g2).

Definition 15.4 (Fiber Bundle with Structure Group). A fiber bundle with
structure (G,F ) is π : E → X such that there exists a cover Uα with ψα :
π−1(Uα)→ Uα × F such that gαβ = ψαψ

−1
β : Uαβ → G ⊂ Homeo(F ).

Example 15.1. Let F be a set and Aut(F ) =permutations of F . Then a fiber
bundle with structure (AutF, F ) is a covering space with fiber F .

Example 15.2. If G = GLn(R) and F = Rn, you get real vector bundles of
rank n.

Example 15.3. Let G = Aff(Rn) = Rn o GLn(R) and F = Rn, we get an
affine bundle.

Example 15.4. Ig G = GLn(C) and F = Cn have complex vector bundle.

Example 15.5. Let G = O(n) and F = Rn, then we have a vector bundle with
inner product.

If E → X is an R vector bundle, an inner product is a map E ×X E → R
such that Ex × Ex → R is a positive definite inner product.

Definition 15.5 (Principal Bundle). Let G be a group, and F = G with action
as right multiplication. Bundles with this structure are called principal bundles
π : P → X.

All the fibers are G, and so we get an action of G on G freely and properly.
These actions fit together and give a free, proper action of G on P , and in fact
P/G ' X.

This is all souces of principal bundles: G acting property and freely on P
and P

π→ P/G = X.
(acting properly means that the map G ×X → X ×X by (g, x) 7→ (gx, x)

is proper)

Definition 15.6 (Associated Bundle). Given a principal G bundle π : P → X
and α be an action of G on F . Then the associated bundle P ×G F → X. This
is a fiber budnle with structure (G,F ).
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Lemma 15.1. 1. If π : P → X a principal bundle and π has a section, then
P = X ×G.

2. If φ : P1 → P2 is a morphism of principal bundles, then it is an isomor-
phism.

Proof. 1. Let s be a section. Define a map P → X×G by p 7→ (π(p), p−1(s(π(p)))).
Then there exists a unique g ∈ G such that pg = s(π(p)). Define another
map X ×G→ P by (x, g) 7→ (s(x)g). These are inverses.

2. Exercise.

This says that the category of principal bundles is a groupoid.
Given a manifold, M , there is a tangent bundle TM . We can define F (M)m,

the frame bundle, to be the set of bases for TXm. This is a principal GLn(R)
bundle.

In fact, TM = F (M)×GLn(R) Rn, so it is an associated bundle.
Given Rn, we can form (Rn)∗ and GLn(R) acts on (Rn)∗ by φ ∈ (Rn)∗,

gφ(v) = φ(g−1v), then F (M)×GLn(R) (Rn)∗ = T ∗M .
F (M)×GLn(R)

∧k R =
∧k

TM .
If we take F (M)×GLn(R) End(Rn) = End(TM).

Theorem 15.2. Given a Lie Group G, there exists a universal principal bun-
dle EG

π→ BG such that there exists a one to one correspondence between
isomorphism classes of principal bundles over X, BunGX and [X,BG] given
by f : X → BG to f∗EG→ X.
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Chiral Yoga: If G acts on X on the left, then G acts linearly on F (X) = {f :
X → C} on the right.

To turn a left action on X into a right action, take x · g = g−1x. Then, we
have a right action on X and so a left action on F (X).

A principal bundle gives rise to transition functions on a trivializing cover
Uα, φα : P |Uα → Uα ×G and gαβ = φαφ

−1
β .

Now suppose that ψ : P1 → P2 is an isomorphism of principal bundles.
Let Uα be a trivializing cover for both. Then φ1

α : P1|Uα → Uα × G and
φ2
α : P2|Uα → Uα ×G.

We now have two sets of transition functions giαβ = φiαφ
i,−1
β .

Define ψα : Uα ×G
φ1,−1
α→ P1|Uα

ψ→ P1|Uα
φ2
α→ Uα ×G.

Claim: ψαg1
αβ = g2

αβψβ . This follows by direct computation.
So now give an open cover Uα of X. Let Z(Uα;G) = {gαβ : Uαβ → G|gαα =

1, gαβgβγ = gαγ}. Define an equivalence relation g1
αβ = g2

αβ if there exist ψα :
Uα → G such that ψαg1

αβ = g2
αβψβ .
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Set H1(U ;G) = Z1(U ;G)/ ∼. If V is a refinement of U , then we have a map
H1(V, G)→ H1(U , G). Then we define H1(X;G) = lim←−H

1(U , G).
BEWARE! H1(X;G) is not necessarily a group.
Let H ⊂ G and P a principal H bundle.

Definition 16.1. We define IndGH P = P ×H G.

It turns out that IndGH P is a principal G-bundle.

Definition 16.2 (Reduction). If Q → X is a principal G-bundle, then a re-
duction of the structure group from G to H is a principel H-bundle such that
IndGH P = Q.

Given H → G we get a map H1(X;H)→ H1(X;G).
By definition, TX (a (GLnR,Rn) bundle) has reductions:

1. GL+
n (R) an orientation

2. On(R) a metric

3. SOn(R) an orientation and a metric

4. Spn(R) an almost symplectic structure

5. GLn(C) an almost complex structure

6. SLn(R) a volume form

7. U(n) a Hermitian structure

There is a lie group Spin(n) which is the universal cover of SO(n), that is,
the nontrivial twofold cover, for n ≥ 3.

If P is an SO(n) bundle and Q is a Spin(n) bundle such that Q ×Spin(n)

SO(n) = P then Q is called a spin structure on P .
(We call the twofold cover of O(n) is called Pin(n).)

Definition 16.3 (Fair cover). Let U be a cover of X. We say that U is fair if
there exists a locally finite partition of unity, λα.

A paracompact space always has a fair cover.
We all a prinicple bundle fair if there exists a trivializing fair cover of X.
Every principal bundle on a paracompact space is fair.

Lemma 16.1. Pullback of a fair principal bundle is fair.

Lemma 16.2. If P → X×I is a principal bundle and P |X×[0,1/2] is trivial and
P |X×[1/2,1] is trivial, then P is trivial.
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Proof. We take φ, ψ to be trivializations. We must only worry about X×{1/2}×
G→ P |X×{1/2} → X × {1/2} ×G given by φψ−1 : X ×G→ X ×G.

This is an automorphism, and so (x, g) 7→ (x, α(g)) where α : G → G is a
continuous map.

Set ψ̃ : P |X×[1/2,1] → X × [1/2, 1] × G by ψ̃(ψ−1(x, t, g)) = (x, t, α(g)). So
then ψ̃ is a trivialization which agrees with ϕ at X × {1/2}, and so we can
glue.

Lemma 16.3. Let π : P → X × I be a fair principal bundle. Then there exists
a cover Uα of X such that P |Uα×I is trivial.

Proof. Let λα be a partition of unity on X × I such that P |supp◦ λα is trivial.
For any N = 1, 2, . . . and any multi-index ~α = (α(1), . . . , α(N)) we define λ~α
on X by λ~α =

∏
1≤i≤N min{λα(i)(x, t)} for t ∈ [ i−1

N , iN ].
λ~α(x) > 0 iff x× [ i−1

N , iN ] ⊂ supp◦ λα(i) for all i = 1, . . . , N .
We claim that P |supp◦ λ~α×I is trivial.
This follows from the previous lemmas.
Thus, P trivializes on supp◦ λ~α × I as ~α runs over all N and multi-indices.
To finish, we must ...
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Theorem 17.1. Let P → X×I be a fair principal bundle with r : X×I → X×I
by r(x, t) = (x, 1), then P ' r∗P .

Remark 17.1. IF f : Y → X and P → X a principal bundle, Q → Y a
principal bundle f : Y → X and f̃ : Q → P making it all commute, then f̃ is
a G map. We say that f̃ covers f . This is equivalent to having a morphism
Q→ f∗P .

Proof. We construct a G-map φ : P → P which covers r. Therefore there exists
a morphism P → r∗P , and so is an isomorphism.

Let Uα be a cover of X with partitions of unity λα such that P |Uα×I is
trivial. ϕα : P |Uα×I → Uα × I ×G is a local trivialization.

Alter λα to get λ̃α such that maxα λ̃α(x) = 1 for all x.
For each α, we define rα : X×I → X×I by rα|X×I\Uα×I = 1 and rα(x, t) =

(x,max{λ̃α(t), t}).
Construct ψα covering rα by ψα(φ−1

α (x, t, g)) = φ−1
α (x, rαg).

Well order the index set A for α, and we claim that r is teh compositive of
the rαs over A.

Then λ̃α is locally finite, and so for any x, there exists N 3 x such that
N ∩ Uα 6= 0 for only finitely many αs.

Then ψ covers r, so we are done.

Corollary 17.2. Give a fair P → X × I and i0, i1 : X → X × I the inclusions
at 0 and 1, p : X × I → X the proejction. THen P ' p∗i∗0P ' p∗i∗1P and
i∗0P ' i∗1P .
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Proof. We have P ' r∗P from the last theorem.
i1p = r and so P ' r∗P ' p∗i∗1P , and similar for i1, and we note that

ri0 = i1, and so i∗1P '∗ r∗P ' i∗0P .

Theorem 17.3. If P → X is a fair principal bundle and f0 ' f1 : Y → X,
then f∗0P

∼= f∗1P .

Given this result, we can define a cofunctor BunG : Top→ Sets which takes
X to isomorphism classes of principal bundles.

1. BunG is a homotopy functor.

2. BunG(
∨
Xα) =

∨
αBunG(Xα).

3. If U, V are two open sets, then BunG(U ∪ V ) →→ BunG(U), BunG(V ) →
BunG(U ∩ V ).

These are the hypotheses of the Brown representability theorem:

Theorem 17.4 (Brown Representability). A homotopy functor h : Top →
Sets, which satisfies the three axioms above, then there exists a CW-complex
Bh such that h(X) ' [X,Bh].

Thus, there is a representing space for BunG.
This approach is insufficient though. We want to understand the classifying

space for BunG.

Definition 17.1. The space that represents BunG is called BG. This is only
determined up to homotopy.

BG has a universal bundle on it, given by 1 ∈ [BG,BG]. This element
corresponds to a bundle EG→ BG.

Theorem 17.5. There exists a universal bundle EG → BG for principal G-
bundles. That is, given P → X a principal G-bundle, there exists a unique
homotopy class of maps f : X → BG such that f∗EG ∼= P .

Next time, we will look at the recognition principle and then perform a
general construction of EG→ BG

Theorem 17.6 (Recognition Principle). If you find a principal G-bundle Q→
B where Q is contractible as a space, then B = BG and Q = EG.

Everything needs to be ”fair”

Example 17.1. For G = Γ a discrete group, then K̃(Γ, 1) is the universal
bundle over K(Γ, 1).

Example 17.2. If G = S1 = U(1), then we get BU(1) = CP∞ and EU(1) =
S∞.
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Example 17.3. For U(n), we get that BU(n) is the grassmanian of n-planes
in C∞.

Definition 17.2 (Characteristic Class). A characteristic class is a natural
transformation c : BunG → H∗.

So now, given EG → BG, we know what all the characteristic classes are:
given c a characteristic class, apply it to EG, then c(EG) ∈ H∗(BG) and
given a class γ ∈ H∗(BG), define a characterisc class by cX(P ) = f∗γ where
P ∼= f∗EG.

Note that H∗(CP) ' Z[c] with |c| = 2.
As CP = BU(1), this c is called the first Chern class for line bundles.
This isn’t all there is to know, however. We need to know how to calculate

them and, in general, there will be more than one, and so we need to know the
relations between them.

18 Lecture 19

Remark 18.1. π : P → X a principal G-bundle. The π∗P → P is a principal
bundle.

π∗P = {(p1, p2)|π(p1) = π(p2)}.
There is an obvious section s(p) = (p, p), and so π∗P ∼= P ×G by (p1, p2) 7→

(p1, p
−1
1 p2)

Definition 18.1 (n-universal). A principal G-bundle π : P → X is called n-
universal if for any CW complex A of dimension ≤ n, with principal G-bundle
Q → A. Then if B ⊂ A is a subcomplex and φ : Q|B → P then φ extends to
φ̃ : Q→ P .

Theorem 18.1. If P → X is n-universal, then for any CW-complex A of
dimension < n, the map [A,X] → BunG(A) by {f : A → X} 7→ f∗P is an
isomorphism of sets.

Proof. If f0 ' f1, then f∗0P
∼= f∗1P from last time, and so the map is well

defined.
Also note that n-universality implies that given any such A and a principal

bundle Q→ A, there exists a map φ̃ : Q→ P (by taking B = ∅).
Thus, the induced map φ : A → X taking Q ∼= φ∗P exists, and so we have

surjectivity.
Injectivity: Suppose that φ0, φ1 : A → X such that φ∗0P ∼= φ∗1P . Then we

have ψ : φ∗0P ∼= φ∗1P and φ̃0 : φ∗0P → P and φ̃1 : φ∗1P → P .

On A × I consider φ∗0P × I → A × I. Define ˜̃
φ =

{
φ̃0 t = 0
φ̃∗1ψ t = 1

. And so ˜̃
φ

extends to a map on all of φ∗0P × I and its induced map on A× I is a homotopy
between φ0 and φ1.

Theorem 18.2. π : P → X is n-universal if and only if πk(P ) = 0 for k =
0, . . . , n− 1.
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Proof. ⇒: Let φ : Sk−1 → P . Then Sk−1 ×G → P ×G ' π∗P → P is a map
of principal bundles. By n-universality, this extends to φ̃ : Bk × G → P × G,
but H : Bk → O by (b, g) 7→ φ̃(b, e) an H|Sk−1 = φ1 ⇒ [φ] = 0 in πk(P ).
⇐: Assume πk(P ) = 0 for k = 0, . . . , n− 1.
TakeBk×G and a map φ : Sk−1×G→ P by f : Sk−1 → P via f(s) = φ(s, e).

Since πk(P ) = 0, this extends to a map f̃ : Bk → P . Then φ̃ : Bk ×G → P is

defined by the composition Bk ×G f̃×1→ P ×G ∼= π∗P → P is an extension.
Finally, extension to cell complexes is done cell by cell using what we proved.

Theorem 18.3. π : P → X is universal if πk(P ) = 0 for all k. [A,X] ∼=
BunGA for all CW A.

General Construction of EG→ BG.
Introduction to Simplicial Techniques:
Define a category ∆ with object set {[0], [1], [2], . . .} and ∆([m], [n]) = {non

decreasing maps from {0, . . . ,m} → {0, . . . , n} are the morphisms. So ∆ = Ord
is the Simplicial Category.

This category is coming from the geometry of simplices. There exist special
morphisms ∂i : [n]→ [n+ 1] the injective maps, i = 0, . . . , n+ 1, and sj : [n]→
[n− 1] the surjective maps, of which there are n.

So geometrically, there are two maps of the zero simplex into the one simplex,
and only one backwards, etc.

We call that ∂i the face maps and the sj the degeneracies. Note that ∂i, sj
generate ∆.

Let C be a category. A simplicial C object is a contravariant functor from ∆
to C, X : ∆→ C. Define Xn = X([n]).

Example 18.1. 1. Simplicial Sets

2. Simplicial Abelian Groups

3. Simplicial Groups

4. Simplicial Spaces

5. Simplicial Simplicial Sets

6. Simplicial Schemes

Example 18.2. 1. A simplicial complex gives a simplicial set. Let K be a
simplicial complex. Order the vertices arbitrarily. Define Xn = {(v0, . . . , vn)
the vertices in K with v0 ≤ v1 ≤ . . . ≤ vn|{v0, . . . , vn} is a simplex
in K}. Then ∂i(v0, . . . , vn) = (v0, . . . , v̂i, . . . , vn) and sj(v0, . . . , vn) =
(v0, . . . , vj , vj , . . . , vn).

2. LetX be a topological space. Define SingnX = {f : ∆n, X|f continuous},
then ∂i = ∂∗i and sj = s∗j simplicial sets.
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Let An be a simplicial abelian group. ∂i : An → An−1. Define ∂ : An →
An−1 by

∑n
i=0(−1)i∂i a homomorphism. Simplicial identities then imply that

∂2 = 0.
This gives a functor \ : sAb→ Complexes of Abelian groups. And so we can

take the homology of simplicial sets.

Theorem 18.4 (Dold-Kan). \ is an equivalence of homotopy categories.

Let An be a simplicial abelian group, and forget the group structure. So
you get a simplicial set. To a simplicial set Xn associate |X| the geometric
realization, then πk(|A|) = Hk(A\).
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Epq2 ⇒ H∗ converging means: there exists a filtration on H∗ such that E∞ is
isomorphic to grH∗.

So we know that BunG(X) ' [X,BG].

Proposition 19.1. Suppose X =
∑
Y . Then BunG(X) ∼= [Y,G].

Proof.
∑
Y = C+Y ∪Y C−Y , and C±Y = [0, 1]×Y/(0, y) ∼ ∗. And so C±Y '

∗, and C+Y ∩ C−Y = Y .
Take a bundle P on X. Restrict to C+Y and C−Y where it becomes trivial.

And so the transition functions are g : C+Y ∩ C−Y → G. Let g1, g2 : Y → G
be two such transition functions. If the associated principal bundles P1 and P2

are isomorphic, then there exist h± : C±Y → G such that g2h+ = h−g1, that
is, g2 = h−g1h+.

Define H : Y × I → G by H(y, t) = h−(y, t)g1(y)h+(y, t) with H(y, 0) = g1
and H(y, 1) = g2.

And so [Y,G] ∼= [
∑
Y,BG] ∼= [Y,ΩBG].

First let [G,G] ∼= [
∑
G,BG] ∼= [G,ΩBG] by 1 7→ i : G→ ΩBG.

Proposition 19.2. i : G → ΩBG is a homotopy equivalent. We say that BG
is a delooping of G.

Definition 19.1 (∞-loop Space). An ∞-loop space is a sequence En of spaces
together with homotopy equivelence (or homeomorphism) En → ΩEn+1 to each
n.

Take an infinity loop space. Then En(X) = [X,En] ∼= [X,ΩEn+1] ∼=
[X,Ω2En+2]. Then the En satisfy the axioms of a homology theory, except
the dimension axiom.

Example 19.1. If En = K(Z, n), then this gives representable cohomology.
(Good Cohomology for Crappy Spaces)

Theorem 19.3. Let U = U(∞) = limn→∞ U(n). Then ΩU ∼= Z × BU . Also
Ω(Z×BU) = ΩBU ∼= U .
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Corollary 19.4. Z×BU,U,Z×BU,U, . . . is an ∞-loop space. The Bott Spec-
trum gives K-theory.

With O instead of U , we get Ω8(Z×BO) = Z×BO.
So now what is BunG(Sn)? It is BunG(

∑
Sn−1) = [Sn−1, G] = πn−1(G).

Back to Simplicial stuff.

Definition 19.2 (Simplicial Object). A simplicial C-object is a collection of
objects in C, Xn, indexed by the non-negative integers together with maps ∂i :
Xn → Xn−1 and si : Xn → Xn+1 for 0 ≤ i ≤ n satisfying ∂i∂j = ∂j−1∂i for
i < j, sisj = sj+1si for i ≤ j, ∂isj = sj−1∂i if i < j, ∂jsj = id = ∂j+1sj, and
∂isj = sj∂i−1 for i > j + 1.

So last time we defined a functor Sing : Top → sSets, and now we define
|−| : sSets→ Top by taking X∗ a simplicial set. Then look at

∏
n(Xn×∆n)/ ∼

via (x, ∂it) ∼ (∂ix, t) for x ∈ Xn, t ∈ ∆n−1, and the same thing with the
degeneracies.

Remark 19.1. Geometric Realization and Sing are adjoint functors.

And so sSets(X∗, Sing∗Y ) = Top(|X∗|, Y ). And so there is a way to set
of homotopy theory of sSets such that the homotopy there and on Top are
equivalent.

Start with Y 7→ Sing∗Y 7→ |SingY | is a weak homotopy equivalence.
This is a completely functorial way to go from a space ot a CW-complex

weakly equivalent to it.

19.1 Simplicial Spaces

Geometric realization: Let X∗ be a simplicial space, then |X∗| =
∐
Xn×∆n/ ∼

(use its topology)
Let Y be a topological space and U a cover.

Definition 19.3. Č(U) =
∐
α Uα0

←←
∐
Uα0α1 . . .. with the maps being ∂i

Fact: |Č(U)∗| is homotopy equivalent to Y .
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Let X,Y be simplicial sets, then (X×Y )n = Xn×Yn where ∂i(x, y) = (∂ix, ∂iy)
adn similarly for sj . Then fact: |X × Y | ∼= |X| × |Y |.

Example 20.1. Let X = Y be two 0-simplices joined by a 1-simplex. Then
work out X × Y .

Given X,Y sSets construct a bisimplicial set (∆0 ×∆0)→ Sets then (X ×
Y )n,m = Xn × Ym → Xn × Ym−1 by 1× ∂j , and similarly.

There are four ways to get a space from a bisimplicial set.

35



1.
∐
Zn,m ×∆n ×∆m/ ∼

2. Zn is simplicial set for each n, n 7→ |Zn,0| simplicial space, etc, then
geometrically realize.

3. |m 7→ |Z0,m||

4. From Zn,m form (∆Z)n = Zn,n, and look at |∆Z|.

Theorem 20.1. All of these are homeomorphic.

Let C be a small category. From C we define a simplicial set where B0C are
the object, B1C are morphisms in C, B2C are sequences x0

φ0→ x1
φ1→ x2, and

similarly for BkC.
We have ∂i given by forgetting an object and composing morphisms. The

sj are given by replacing xj with xj
id→ xj .

This is a simplicial set.
Define BC = |B∗C|. This is the classifying space of the category.
Embellishment: If C is a topological category, that is, obC and hom C are

topological and composition is continuous, then B∗C is a simplicial space.

Example 20.2. 1. If Γ is a group, then Γ is a category with 1 object and
whose automorphism group is Γ. Then BΓ is K(Γ, 1).

2. If G is a Lie group, then it is a topological category and BG is really BG.

3. Let X be a simplicial complex, and define C whose objects are the simplices
of X and σ → τ when σ is a face of τ . Then |BC| ∼= X with the simplicial
structure of the Barycentric subdivision

If C and D are two small categories and F,G : C → D are functors, we get
simplicial maps BF,BG : BC → BD.

Proposition 20.2. If N is a natural transformation from F to G, then BF '
BG.

Proof. For all x ∈ C, there exists a morphism in D, Nx : F (x) → G(x), such
that if f : x→ y in C, then the appropriate diagram commutes.

Define I to be the category with two objects, {0}, {1} and one nonidentity
morphism {0} → {1}, then BI ∼= I = [0, 1].

Now, note that a natural transformation N : F ⇒ G is the same as a functor
H : C × I → D which satisfies the usual homotopy conditions.

Let X be a topological space, define EX to be teh topological category with
object the points of X and morphisms in X ×X.

Proposition 20.3. BEX is contractible.
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Proof. Pick a point x0 ∈ X. Define F : EX → Cat{x0} and G the embedding
in the opposite direction.

Then FG is the identity functor and GF takes everything to x0 and 1x0 .
Claim: there exists N from GF to 1EX by Nx : GF (x)→ x, then Nx is the

unique morphism from x0 → x. And so, EX is contractible.

Take G a topological group, and let BG be the classifying space from above.

Theorem 20.4. BG is BG, the classifying space for principal G-bundles.

Proof. for EG. Then look at BEG. Now BEG is contractible. G acts on
the simpicial space EG freely and properly. Thus BEG/G wil be an avatar of
BG.

Corollary 20.5. If Γ is a group, then H∗(BΓ; Z) ∼= H∗(Γ; Z), where the left is
singular and the right is group cohomology.

Proof. Recall that BΓ is a simplicial set, and hom(BΓ,Z) ∼= homZ(ZBΓ,Z)
(ZBΓ,

∑
(−1)i∂i) is a chain complex. ComputingH∗(BΓ) we see th homZ(ZBΓ,Z)

computes H∗(Bγ,Z), but hom(BΓ,Z) is isomorphic to the cochain complex
computing the group cohomology.

If Γ is a group, then BΓ is a simplicial set, and all the appropriate ∂i are
group homomorphisms iff Γ is abelian.

Let A be an abelian group. BA is a simplicial abelian group. Take B(BA),
this is a bisimplicial abelian group. BA = K(A, 1), BBA = K(A, 2), etc.

Take ∆BBA, then BiA is a simplicial abelian group, and we can continue.
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MISSED
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Characteristic Classes
Thom Class and Isomorphism

Theorem 22.1. For Ek/R → X an oriented rank k real vector bundle, then
there exists a unique Φ ∈ Hk

CV (E,Z) such that Φ|Ex ∈ Hk
c (Ex,Z) is the canon-

ical class defined by the orientation.

H∗CV (E,Z) = H∗(E, Ė; Z) where Ė = E \ z(X) the zero section, and is
isomorphic to H∗(BE , SE), where BE is the ball bundle and SE the sphere
bundle.

Φ : Hi(X) → Hi+k
CV (E) ∼= Hi+k(E, Ė) ∼= Hi+k(BE , SE) where Φ(x) =

π∗(x) ∪ ΦE is an isomorphism.

Definition 22.1 (Euler Class). e(E) = z∗ΦE ∈ Hk(X,Z).
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Proposition 22.2. 1. f : Y → X, then f∗e(E) = e(f∗E), and (f∗E)y =
Ef(y), so Φf̃∗E = f̃∗ΦE, where f̃ : f∗E → E.

2. Let −E be E with the opposite orientation, then e(−E) = −e(E).

3. c(E ⊕ F ) = e(E) ∪ e(F ).

4. If k is odd, then 2e(E) = 0, so e(−E) = −e(E) = e(f∗E) = f∗e(E) =
e(E) when f is orientation reversing diffeo along fibers.

5. If π : E → X has a nowhere zero section, then e(E) = 0.

Theorem 22.3 (Leray-Hirsch). Let π : Y → X be a fiber bundle and suppose
that α1, . . . , αk ∈ H∗(Y ) such that αi|H∗(π−1(x)) is a basis of the cohomology.
Then H∗(Y ) is a free H∗(X)-module with basis α1, . . . , αk.

This can be proved easily using spectral sequences, for example.
If V is a complex vector space of dimension n, then P(V ) ∼= CPn−1. The

Tautological bundle is τ = {(`, v) ∈ P(V )×V |v ∈ `}. We get an exact sequence
0→ τ → P(V )× V → Q→ 0.

τ∗ is the hyperplane bundle.
H∗(P(V )) = Z[x]/xn, setting x = c1(τ∗) and |x| = 2.

Lemma 22.4. c1(τ∗) is a generator of H∗(P(V )).

Let τ : V n → X be a C-vector bundle of rank n. So gαβ : Uαβ → GLnC.
We have GLnC→ PGLnC = Aut(CPn−1)

We can then associate a bundle P(V )→ X, where P(V ) = P×PGLnCPn−1,
where P is a principal PGLnC-bundle.

On P(V ) we have τV , a tautological line bundle. p ∈ P(V ), π(p) ∈ X, so p
is a line in Vπ(p). Then τV = {(x, `, v) ∈ X × P(Vx)× Vx|v ∈ `}.

So now take c1(τ∗V ) ∈ H2(P(V )). Then powers of this are global classes with
the proeprty that when restricted to a fiber P(Vx), c1(τ∗V )|P(V∗) is isomorphic to
c1(τ∗Vx) where τV |Vx = τ in P(Vx).

By Leray-Hirsch, H∗(P(V )) ∼= H∗(X)[1, c1(τ∗V ) = x, x2, . . . , xn−1] is a basis
as a module.

So there exists a relation xn + c1(V )xn−1 + c2(V )xn−2 + . . . + cn(V ) = 0.
The coefficients ci ∈ H2i(X) are called the ith Chern Classes of V . And in fact,
H∗(P(V )) ∼= H∗(X)[x]/(xn + c1x

n−1 + . . .+ cn).

Theorem 22.5. Let c(V ) = 1 + c1(V ) + . . . + cn(V ) ∈ Hev(X) be called the
total chern class. It has the following properties:

1. c, ck are natural.

2. ck(V ) = 0 if k > rank V .

3. c(V ⊕W ) = c(V ) ∪ c(W ). (This is the Whitney Sum Formula)

4. If V has rank n, then cn(V ) = e(V 2n/R).
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5. If L1, L2 are line bundles, then c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Proof. We prove 5 first. g1
αβ , g

2
αβ denote the transitions for L1, L2 respectively

on the same covering. Define g̃iαβ to be the log of giαβ . So then c1(L1) =
(δg̃1)αβγ = g̃βγ − g̃αγ + g̃αβ .

The transition functions for L1⊗L2 are the products, and so g̃1 + g̃2 = ˜g1g2,
and so we’re done.

1 and 2 are simple also. The rest is next time.

23 Lecture 24

Let π : Ek/R→ X be an oriented vector bundle.
Φ : Hi(X)→ Hi+k(E, Ė) by a 7→ π∗a ∪ ΦE . Look at the LES of Ė → E.
→ Hi(E, Ė) → Hi(E) → Hi(Ė) → Hi+1(E, Ė) → . . . We have maps

identifying Hi(E) ∼= Hi(X) and Hi(E, Ė) ∼= Hi−k(X).
Gysin Sequence: → Hj(X)→ Hj+k(X)→ Hj+k(Ė)→ Hj+1(X)→
Look at the Gysin Sequence for τ → CPn. Then we have → H1(τ̇) →

H0(CPn) → H2(CPn) → H2(τ̇) → H1(CPn) → . . .. τ̇ = Cn+1 \ {0} ' S2n+1,
and so H2(τ̇) = H1(τ̇) = 0 if n 6= 0. And so, ∪e(τ) is an isomorphism on
H∗(CPn) until H2n−1(CPn)→ H2n+1(CPn).

H∗(CPn) ∼= Z[e(τ)].

Remark 23.1. If L is a line bundle, then L∗x = homC(Lx,C) = L̄x. So then
(L̄)/R = −(L/R). So c1(L⊗L∗) = c1(hom(L,L)) = c1(1) = 0, and so c1(L∗) =
−c1(L).

Theorem 23.1 (Characterization of Chern Classes). 1. c(E) ∈ H∗(X)

2. c(f∗E) = f∗c(E) when f : Y → X and π : E/C→ X.

3. Normalization: c(τ∗) = 1 + x in CPn.

4. Whitney Sum Formula: c(E ⊕ F ) = c(E) ∪ c(F )
Additionally, these properties characterize the chern clases.

More properties

1. cj(Ek) = 0 for j > k

2. ck(Ek) = e(E/R)

3. H∗(BGLn(C); Z) ∼= Z[c1, . . . , cn] where |ci| = 2i, where ci = ci(EGLn(C)×GLnC
Cn).

Everything but the Whitney formula follows easily from the naturality of c1
and P.

We now prove Whitney.
Let i : E → E ⊕ F take ex 7→ (ex, 0x). Then P is a functor (at the level of

spaces) and so i′ : P(E)→ P(E⊕F ). Define p : E⊕F → F the projection. Then
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define p− : P(E⊕F )\ i′(P(E))→ P(F ). Let j : P(E⊕F )\ i′(P(E))→ P(E⊕F )
the inclusion.

Facts: (i′)∗τE⊕F = τE , j∗(τE⊕F ) = (p′)∗τF .
Define α =

∑e=rankE
i=0 π∗E⊕F (ci(E))xe−iE⊕F ∈ H2e(P(E ⊕ F )).

β =
∑f
`=0 π

∗
E⊕F (c`(F ))xf−`E⊕F ∈ H2f (P(E ⊕ F )).

(i′)∗α =
∑e
i=0(i′)∗π∗E⊕F (ci(E)) ∪ (i′)∗xe−iE⊕F =

∑e
i=0 π

∗
Eci(E) ∪ xe−iE = 0.

So now j∗β =
∑f
k=0 j

∗π∗E⊕F (ck(F ))j∗xf−kE⊕F =
∑f
k=0(p′)∗π∗F (ck(F ))(p′)∗xf−kF =

p′
∑f
k=0 π

∗
F (ck(F ))xf−kF = 0.

By the Long exact sequence from P(E ⊕ F ),P(E ⊕ F ) \ i′(P(E))

H∗(P(E ⊕ F ),P(E ⊕ F ) \ i′(P(E))) `→ H∗(P(E ⊕ F ))
j∗→ H∗(P(E ⊕ F ) \

i′(P(E))).
Then α∪ β = α∪ `(β′) = (i′)∗α∪ β′ = 0. So 0 = α∪ β. This is the defining

relation for c(E ⊕ F ) (if you work it out carefully)
Now we move on to the splitting principle
If 0 → E → F → L → 0 is an exact sequence of vector bundles, then

F ∼= E ⊕ L.
This is a consequence of continuous partitions of unity.

Corollary 23.2. Let X be compact. There is an equivalence of categories be-
tween finite dimensional vector bundles on X and finitely generated projective
modules over C(X).

Proposition 23.3. Given Ek/C→ X a vector bundle, there exists F (E)→ X
a fiber bundle such that H∗(X)→ H∗(F (E)) by π∗F (E) is injective and π∗F (E)E =
L1 ⊕ . . .⊕ Lk where Li are complex line bundles.

Corollary 23.4 (Splitting Principle). In order to check any identity on Chern
classes, it suffices to check it on sums of line bundles.

Check: ck(E) = e(E/R). Then let F (E)→ X be a splitting space.
Then π∗(ck(E)) = ck(π∗E) = ck(L1 ⊕ . . . ⊕ Lk) = c1(L1) ∪ . . . ∪ c1(Lk) =

e(L1) ∪ . . . ∪ e(Lk) = e(L1 ⊕ . . . ⊕ Lk) = e(π∗E) = π∗e(E). As π∗ is injective,
ck(E) = e(E).

24 Lecture 25

Proposition 24.1. Given π : Ek/C → X, there exists a fiber bundle p :
F (E) → X such that p∗E ∼= L1 ⊕ . . . ⊕ Lk and p∗ : H∗(X) → H∗(F (E))
is injective.

Proof. Form P(E) → X. On P(E), we have τE , which fits into 0 → τE →
p∗E → E1 → 0 and H∗(P(E)) = H∗(X)[1, x, x2, . . . , xk−1] where x = c1(τ∗E).

the map p∗ : H∗(X) → H∗(P(E)) is injective, and p∗E ∼= τE ⊕ E1. Apply
the same construction to E1. Then induction proves the result.
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To see that c(1n) = 1, note that (1n → X) = f∗(1n → pt) which has no
cohomology to pull back.

We know that c(τ∗) = 1 + x, with x ∈ H2(CPn) a generator.
TCPn: T`CPn = homC(`, τ⊥` ) and so TCPn = hom(τ, τ⊥). We have 0 →

τ → 1n+1 → τ⊥ → 0. Tensor this with τ∗, and we get 0→ τ∗⊗τ → τ∗⊗1n+1 →
τ∗ ⊗ τ⊥ → 0. This is just 0→ 11 → ⊕n+1

i=1 τ
∗ → TCPn → 0. So noncanonically,

τ∗ ⊕ . . . ⊕ τ∗ ∼= 11 ⊕ TCPn. And so c(τ∗ ⊕ . . . ⊕ τ∗) = c(11 ⊕ CPn). This is
c(τ∗)n+1 = c(11)c(TCPn), so c(τ∗)n+1 = c(TCPn)

And so, (1+x)n+1 = c(TCPn). And so, c(TCPn) = 1+(n+1)x+
(
n+1

2

)
x2 +

. . .+
(
n+1
n

)
xn. So then ci(TCPn) =

(
n+1
i

)
xi.

Now note that τ∗ is a holomorphic (even algebraic) line bundle. Γhol(CPn, (τ∗)⊗k)
is the set of homogeneous polynomial of degree k in z0, . . . , zn

If you have a homogeneous polynomial p of degree k, this defines a setion of
(τ∗)⊗k. The zeros of this section as a subset of CPn are the zeroes of p in CPn.

Take a section s and suppose that Hk is the zeroes of s which intersects
transversely to the zero section z of (τ∗)⊗k.

Since s and z are transverse, the normal bundle to Hk in CPn is (τ∗)⊗k|Hk ,
we will denote this by ν. We have 0 → THk → TCPn|Hk → ν → 0, and so
c(TCPn|Hk) = c(THk ⊕ ν) = c(THk)c(ν) = c(THk)(1 + kx).

And so c(THk) = (1+x)n+1|Hk
1+kx|Hk

.
Curve=Riemann Surface. LEt p be a degree k homogeneous polynomial

with p−1(0) smooth.
c(THk)|Hk = (1+x)3

1+kx = 1+3x
1+kx , and that is 1 + (3 − k)x. We often call the

Chern class of the tangent bundle to a manifold the Chern class of the manifold.
Euler characteristic of Hk is determined by g, and is χ(Hk) = 2− 2g.
On the other hand

χ(Hk) = 〈e(THk), [Hk]〉
= 〈c1(THk), [Hl]〉
= 〈(3− k)x, [Hk]〉
= 〈(3− k)x, [CP2] ∩ kx〉
= 〈(3− k)x ∪ kx, [CP2]〉
= 〈k(3− k)x2, [CP2]〉
= k(3− k)

And so 2− 2g = k(3− k), and so g = (k−1)(k−2)
2 .

Quartic in CP3

This defines K ⊂ CP3 a Kummer Surface (or K3).
c(TK) = (1+x)4

1+4x = 1 + 6x2. So c1(TK) = 0.
For real vector bundles, Ek/R, we define the kth Pontrjagin class pk(E) =

(−1)kc2k(E ⊗R C).
Example: p1(TK) = c2(TK ⊗R C) = c2(TK ⊕ TK) = c2(TK) + c2(TK) =

12x2.
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Let π : Ek/C→ X be a vector bundle. Think of E formally as L1⊕ . . .⊕Lk.
So then c(Ek) = c(L1 ⊕ . . . ⊕ Lk) = c(L1) . . . c(Lk) =

∏
(1 + c1(Li)), and so

ck(E) is the kth elementary symmetric function in the c1(Li) = xi’s.
Thus, if an expression in the xi’s is symmetric, you can express it in terms

of Chern classes.
We define the L-polynomial to be L(Ek/C) ≡

∏k
i=1

√
xi

tanh
√
xi

, the Todd poly-

nomial Td(E) =
∏k
i=1

xi
1−exi , and ch(E) =

∑k
i=1 e

xi , the Chern character.
ch(E ⊕ F ) = ch(E) + ch(F ), ch(E ⊗ F ) = ch(E)ch(F ).
If M is a compact oriented manifold of dimension 4k, then sign(M)is given

by taking H2k(M) × H2k(M) → H4k(M) = Z a symmetric nondegerate bi-
linear pairing. Diagonalize and take the number of + eigenvalues minus the -
eigenvalues.

If M = ∂W , and W compact, then sign(M) = 0. sign(CPn) = 1.

Theorem 24.2 (Hirzebruch’s Signiture Theorem). sign(M) = 〈L(TM ⊗R
C), [M ]〉

In dimension 4, L = p1/3, where p1 is the first Pontrjagin class.
sign(K) = 〈p1(TK)/3,K〉 = 〈4x2, [K]〉 = 〈4x2,CP3 ∩ [4x]〉 = 16.

Theorem 24.3 (Lichnerowisz). K has no metric of positive scalar curvature.
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