1 Schnell - Deligne’s Theorem on Abelian Varieties, Part I

Theorem 1.1 (Deligne). On an abelian variety, all Hodge classes are absolutely Hodge.

The proof breaks up into two parts:
1. reduce to the case of CM abelian varieties
2. Deal with CM case.

We’ll deal with step 1 today.

Recall, in the case of weight 1:

Definition 1.2 (CM field). A CM field is a number field E of the form $E = F[t]/(t^2 - f)$ where $f \in F$ and F is totally real and under all embeddings $F \subset \mathbb{R}$, f is negative.

Definition 1.3 (CM abelian variety). An abelian variety is CM if there exists a CM field $E \subset \text{End}(A) \otimes \mathbb{Q}$ such that $\dim_E H^1(A, \mathbb{Q}) = 1$

This implies that $[E : \mathbb{Q}] = \dim_C H^1(A, \mathbb{Q}) = 2 \dim A$.

There is a nice criterion $MT(A) = MT(H^1(A, \mathbb{Q}))$ (MT means Mumford-Tate group)

Proposition 1.4. If A is simple, then A is CM if and only if $MT(A)$ is abelian.

Proposition 1.5. Given any abelian variety A and a Hodge class α on A, there exists a family $A \rightarrow B$ of abelian varieties with B irreducible and quasi-projective such that there exists $0 \in B$ with $A_0 \cong A$ and the Hodge locus of α is B, and there is $t \in B$ where A_t is CM.

Proof. Choose a polarization Q and let $G = \text{Aut}(H^1(A, \mathbb{Q}), Q)$ and $M = MT(A)$ the smallest \mathbb{Q}-subgroup whose \mathbb{R}-points contain the image of $\phi : \mathbb{S}^1 \rightarrow G(\mathbb{R})$.

Abelian varieties of the same kind, along with a choice of basis for $H^1(A, \mathbb{Z})$, are parameterized by the period domain $D = G(\mathbb{R})/K$.

Note: points of D are classes of gH in terms of ϕ. $\phi_{g,H} = g\phi g^{-1}$.

Main idea: family comes from the Mumford-Tate domain: $D_{\phi} = M(\mathbb{R})/M(\mathbb{R}) \cap K \subset D$.

This should have the properties that for all Hodge structures $H' \in D_{\phi}$,

1. $MT(H') \subset M$
2. any Hodge tensor for A is a Hodge tensor for H'
3. $\phi_{H'} = g\phi g^{-1}$ for $g \in M(\mathbb{R})$.

Finding CM points corresponds to finding points with abelian MT. $\phi(\mathbb{S}^1) \subset M(\mathbb{R})$ contained in some maximal \mathbb{R}-torus T_0, and we can show that for $\xi_0 \in m_{\mathbb{R}}$ generic, T_0 is the stabilizer of ξ_0.

Nearby, there exists $\xi \in m_{\mathbb{R}}$ close to ξ_0, then if T is the stabilizer of ξ, it is a \mathbb{Q}-torus. There exists $g \in M(\mathbb{R})$ such that $\xi = g\xi_0g^{-1}$, and $g\phi g^{-1}$ has image in T. Then $MT(H_{g\phi g^{-1}}) \subset T$ is abelian.

Problem: family over quasi-proj base, not D_{ϕ}. Solution: Fix an $N >> 0$ and use a level N structure.

Define $\mathcal{M}_{g,Q,N}$ to be the moduli space of abelian varieties of dimension g with polarization Q and level N structure (a basis of the N-torsion points) and let $A_{g,Q,N} \to \mathcal{M}_{g,Q,N}$ the universal family. OUr replacement for D_{ϕ} is to let $B \subset \mathcal{M}_{g,Q,N}$ be the Hodge locus of the Hodge tensors for $H^1(A, \mathbb{C})$ defining $MT(A)$.

B is algebraic by CDK, and finite etale over $\Gamma \backslash D_{\phi}$. In this case, things are ok.

Proof that (for A simple), $MT(A)$ abelian implies A is CM.

We start with the fact that $E = \text{End}(A) \otimes \mathbb{Q}$ is a division algebra, since A is simple. It is also the set of \mathbb{Q}-endomorphisms that commute with $MT(A) = M$.

So we know that M is abelian, and thus it acts on $H^1(A, \mathbb{C})$, and we can write $H^1(A, \mathbb{C}) = \oplus_{\chi} H^1(A, \mathbb{C})_{\chi}$ for characters, and thus $E \otimes \mathbb{C} = \oplus_{\chi} \text{End} H^1(A, \mathbb{C})_{\chi}$.

And so $\dim_{\mathbb{Q}} E \geq \dim H^1(A, \mathbb{Q}) = 2\dim A$ is bounded above by $2\dim A$. So $2\dim A = \dim \mathbb{Q}E$ and thus E is a commutative field, so $\dim E H^1(A, \mathbb{Q}) = 1$.

Now, use the Rosati involution $\phi \mapsto \phi^t$ on E, and $Q(\phi h_1, h_2) = Q(h_1, \phi^t h_2)$, and F the fixed field. We claim that $[E : F] = 2$ and F is totally real.

We have that $F = \mathbb{Q}(\phi)$, with $\phi = \phi^t$ and take the minimal polynomial. Then λ_j, the roots, are the eigenvalues of the action of ϕ on $H^1(A, \mathbb{Q})$, and if we set $\lambda = \lambda_j$, and ϕ acts on $H^1(A, \mathbb{C})$ preserving $H^{1,0} = H^{0,1}$, there exists the roots, are the eigenvalues of the action of ϕ on $H^1(A, \mathbb{Q})$, and if we set $\lambda = \lambda_j$, and ϕ acts on $H^1(A, \mathbb{C})$ preserving $H^{1,0} = H^{0,1}$, there exists $h \in H^{1,0}$ with $\phi(h) = \lambda h$, $\phi(\bar{h}) = \lambda \bar{h}$. Look at $Q(\phi h, \bar{h}) = Q(h, \phi \bar{h})$, this is $\lambda Q(h, \bar{h}) = \lambda Q(h, \bar{h})$ and so $\lambda = \bar{\lambda}$, so $\lambda \in \mathbb{R}$.

2 Kerr - Deligne’s Theorem on Abelian Varieties, Part II

Let A is a CM abelian variety, that is, an abelian variety such that $MT(H^1(A))$ is abelian.
Now, if \(t \in H^{2p}(A^{an}, \mathbb{Q}) \cap F^p H^{2p}_{dH}(A) \) and \(\sigma \in \text{Aut}(\mathbb{C}/\mathbb{Q}) \) then we want to show that \(t^\sigma \in F^p H^{2p}_{dH}(A^\sigma) \) lies in \(H^{2p}(A^{an,\sigma}, \mathbb{Q}) \).

Let \(E/\mathbb{Q} \) be a CM field of degree \(2e \) such that \(E \) is totally imaginary and there exists \(p \in \text{Gal}(E/\mathbb{Q}) \) with \(p^2 = \text{id}, \phi \circ p = \phi \) for all \(\phi \in \text{hom}(E, \mathbb{C}) \).

Now, take \(F \) to be the totally real fixed field, and \(\xi \) such that \(E = F(\xi) \), and \(\xi^2 \in F \) and \(\sqrt{-1} \phi_i(\xi) > 0 \) for \(i = 1, \ldots, e \) with \(\phi_i \in \text{hom}(E, \mathbb{C}) \) generated by \(\Phi = \{ \phi_1, \ldots, \phi_e, \bar{\phi}_1, \ldots, \bar{\phi}_e \} \). We call \((E, \Phi)\) the CM type of \(E \).

Now, consider \(A/\mathbb{C} \) an abelian variety with \(E \rightarrow \text{End}(A) \otimes \mathbb{Q} = \mathcal{E} \). Then \(V = H^1(A, \mathbb{Q}) \) is an \(E \)-vector space of even dimension \(d \) and \(\dim A = ed = D \).

Now, \(V \) is self-dual, and so \(E \) acts on \(V^\vee \) and we have a natural quotient map \(\wedge^d V^\vee \rightarrow \wedge^d V^\vee \), and the dual is an inclusion defined over \(E \).

\(E \) is a \(\mathbb{Q} \)-vector space of dimension \(2e \) and it acts on \(E \otimes \mathbb{Q} \mathbb{C} = \oplus_{\phi \in \text{hom}(E, \mathbb{C})} E^\phi \), adn similarly for \(V \), adn have

\[
\begin{align*}
\wedge^d V & \cong \bigoplus \Lambda^d V_{\phi_i} \cong (\wedge^d V)_C \\
\Lambda^d V & \rightarrow \Lambda^d V
\end{align*}
\]

The HS on \(V \) may be viewed as \(\phi : \mathbb{U} \rightarrow \text{GL}(V) \) taking \(zz \) to the \(\mathbb{C} \)-linear endomorphism of multiplication by \(z^{1-0} \) on \(V^{1,0} \) and \(z^{0-1} \) on \(V^{0,1} \) and this must commute with \(v(E) \).

Therefore, \(V_{\phi_i} = (V_{\phi_i} \cap V^{1,0}) \oplus (V_{\phi_i} \cap V^{0,1}) = V^{1,0}_{\phi_i} \oplus V^{0,1}_{\phi_i} \), and are of dimension \(a_i \) and \(b_i \) with \(a_i + b_i = d_i \).

So the Hodge type of \(\wedge^d V_{\phi_i} \cong \bigwedge_{\mathbb{C}} a_i V^{1,0}_{\phi_i} \oplus \bigwedge_{\mathbb{C}} b_i V^{0,1}_{\phi_i} \) is \((a_i, b_i)\).

Conclusion: If \(\dim(V^{1,0}) = d/2 \) for each \(i = 1, \ldots, 2e \), then \(\bigwedge_{\mathbb{C}}^d V \subset \bigwedge_{\mathbb{Q}}^d V \) consists of Hodge classes (the Weil classes).

If \(A_0 \) is an abelian variety of dimension \(d/2 \) and \(A = A_0 \otimes \mathbb{Q} E = A_0 \times \cdots \times A_0 \) \(2e \) times, this is then \(\mathbb{C}^{d/2} \otimes \mathbb{C}^{2e} / \Lambda \otimes \mathcal{E}_E \). Let \(V = H^1(A, \mathbb{Q}) \), this is just \(H^1(A_0, \mathbb{Q}) \otimes \mathcal{E} \), and so taking \(E \) to act on the factor of \(E \), we get \(V_{\phi_i} \cong V_{\phi_i} \otimes \mathbb{C}_{\phi_i} \cong V_{i,\mathbb{C}} \).

This gives us that \(\bigwedge_{\mathbb{C}}^d V_{\phi_i} \cong \bigwedge_{\mathbb{C}}^d V_{i,\mathbb{C}} = H^d(A_0, \mathbb{C}) \cong H^{d/2,d/2}(A_0) \).

Moreover, \(\text{Aut}(\mathbb{C}) \) changes neither the product structure on \(A \), the endomorphisms (which are defined by cycles in \(A \times A \)) nor the class of \([p]\) on \(A_0 \). Thus, \(\bigwedge_{\mathbb{C}}^d V \) in this cases consists of absolute Hodge classes.

Now, think of \(V \) as a fixed \(\mathbb{Q} \)-vector space of dimension \(D \) with nondegenerate alternating form \(Q : V \times V \rightarrow \mathbb{Q} \).

Let \(\phi \) be any weight 1 Hodge structure on \(V \) polarized by \(Q \) and \(E \rightarrow \text{End}(V, \phi) \) an isomorphism (in such a way that \(Q \) gives \(V^{1,0,\phi} \) and \(V^{0,1,\phi} \)). We impose the condition that \(\dim V^{1,0,\phi} = d/2 \) for all \(i \).

Then there exists a unique \(E \)-Hermitian form \(\psi : V \times V \rightarrow E \) with \(Q = \text{tr}_{E/\mathbb{Q}}(\mathcal{E} \cdot \psi) \) and \(\phi \) stabilizes \(\psi \) and commutes with \(i(E) \). Hence, \(M_\phi \subset \text{Aut}_E V \cap \text{Sp}(V, \mathbb{Q}) = \text{Res}_{E/\mathbb{Q}} U_E(V, \psi) \) and \(X = M_\phi(\mathbb{R})^+ \subset h^D \) is a MT domain which
precisely classifies the abelian varieties (or HS's) satisfying the above conditions which are precisely that the HS for which $\bigwedge^d V \subset \bigwedge^d V$ consists of Hodge classes.

Now, $\mathcal{A} \rightarrow \Gamma \backslash X$ a torsion free congruence subgroup is by the Baily-Borel theorem a quasi-projective algebraic variety parameterizing such \mathcal{A}.

Applying Principle B again leads to

Theorem 2.1. *Weil classes on "Veil algebraic varieties" are absolute Hodge*

The rest of Deligne’s proof: Let \mathcal{M} be cut out by $H_{q_A'}$ and $\tilde{\mathcal{M}}$ be cut out by $AH_{q_A'}$ (the Hodge and absolute Hodge tensors) then

Theorem 2.2 (Principle A). *If a tensor $t \in T^{k,\ell}H^1(A, \mathbb{Q})$ is fixed by $\tilde{\mathcal{M}}$, then it is absolute Hodge.*

For CM abelian varieties, Deligne shows that $\tilde{\mathcal{M}} \supseteq \mathcal{M}$ is an equality by producing enough absolute Hodge classes to push $\tilde{\mathcal{M}}$ inside \mathcal{M}. He does this by looking at endomorphisms of the CM field, $A_{\sigma \Phi} \rightarrow A_{\Pi}$ and Weil Hodge classes.

This is dense on $\prod_{\Phi_i} A_{\Phi_i}$.