
Homework 12 Solutions

1 (a) Let F be a field such that [F : Q] = 2. Then F has a basis of
two elements over Q. We choose one to be 1 and the other to be x.
Thus, x2 = (−b)x + (−c)1, becuase it must be in F and everything
in F is a linear combination of 1, x. Thus, x satisfies x2 + bx +
c = 0. So, in particular, x = −b±

√
b2−4c
2 . Now, F = Q(x), and so

F = Q(−b±
√
b2−4c
2 ). However, multplication and addition of rational

numbers on x doesn’t change Q(x), and so F = Q(
√
b2 − 4c) If b2−4c

has any square factors, we can pull them out, and otherwise clear
denominators, so that F = Q(

√
d) for some d ∈ Z which is square

free.

(b) If d1 = d2, then Q(
√
d1) = Q(

√
d2). Now assume that Q(

√
d1) =

Q(
√
d2) for two square-free integers. Then

√
d1 = a+b

√
d2. Squaring

both sides, we obtain d1 = a2 + b2d2 + 2ab
√
d2. Now, as a, b, d1 are

rational and
√
d2 is not, then either a = 0 or b = 0. If b = 0, then√

d1 = a ∈ Q, which is false. Thus, a = 0. Then
√
d1 = b

√
d2. And

so d1 = b2d2. Set b = m
n in lowest terms. Then we have n2d1 = m2d2,

which contradicts d1, d2 being square-free. Thus, d1 = d2.

(c) The analogue isn’t true because the cubic formula requires taking
not only cube roots but cube roots of square roots. The analogue
of part b is also false, because Q( 3

√
2) = Q( 3

√
4), as 3

√
2
2

= 3
√

4 and
3
√

4
2

= 3
√

16 = 2 3
√

2.

2 (a) First off, it is a subgroup. Let x, y ∈ µK,n. Then xn = yn = 1.
Look at xy−1. Raise this to the nth power, and we get (xy−1)n =
xn(y−1)n = xny−n = xn(yn)−1 = 1. Now all we must show is that
the group is cyclic. It is enough to show this for the splitting field of
xn−1 over K, because the nth roots of unity in K will be a subgroup
of the nth roots of unity over the splitting field, and so if the group
is cyclic over the splitting field, the group must always be cyclic, as
it will be a subgroup of a cyclic group. So we must just show that
the group is cyclic: let n =

∏
di, with di = pai

i . Now, for each i, we
have xn − 1 = (xdi − 1)(xn−di + xn−2di + . . .+ xdi + 1). So di of the
nth roots of unity satisfy xdi = 1, but n− di don’t.

Furthermore, xdi − 1 = xp
ai−1
i − 1)(xp

ai
i −p

ai−1
i + . . . + 1). Thus, of

the dith roots of unity, pai−1
i are actually pai−1

i st roots, but the rest

1



only satisfy xdi = 1. Let ui be one of these. So ui has order di in
the group of dith roots of unity. Now, the nth roots of unity form a
group of order n, and so it can be written as a direct sum of finite
groups of orders di. As each of these groups is cyclic by the above
argument, their product group is cyclic. Thus, µK,n is a cyclic group.

(b) We want to find the group of 12th roots of unity over various fields.
For fields containing Q, this is contained in the intersection of the
field with the unit circle in the complex plane. Thus, for Q,Q(

√
3),R,

the group of twelfth roots of unity is {−1, 1}. For Q(
√
−1), the only

elements lying on the unit circle are {1,−1, i,−i}, all of which are
twelfth roots of unity. For Q(

√
−3), we have the sixth roots of unity

(see the next problem). For Fp, the multiplicative group is of order
p − 1. So for p = 2, 3, 5, 7, we have p − 1 = 1, 2, 4, 6, all of which
divide twelve, and so all nonzero elements are 12th roots of unity.
For F11, the multiplicative group is of order 10=2*5. So there will
only be two twelfth roots, ±1, which is {1, 10}.

5 We first make the substitution y = x2. This reduces the equation to
y2 + y+ 1 = 0, which has solutions −1±

√
1−4

2 = ω, ω2. However, this gives
x2 = ω, ω2, and so we get x = ω,−ω, ω + 1,−ω − 1. Thus, all four roots
are in Q(ω), so the splitting field is contained in Q(ω). However, Q(ω) is
the smallest field containing ω, and so must be contained in the splitting
field. Thus, F (ω) is the splitting field.

6 (a) The splitting field of x4 + 1 must contain the solutions to x4 +
1 = 0, that is, x4 = −1. So x2 = ±i, and x = ±

√
±i. So, we

have Q(eπi/4, e−πi/4). But e−πi/4 = e7πi/4, and so the extension is
Q(eπi/4). Any element of this field can be written as a + beπi/4 +
ceπi/2 + de3πi/4, and so the extension has degree 4.

(b) Similarly, we want the smallest field with the solutions to x6 + 1 = 0.
The sixth roots of −1. This is the field extension generated by eπi/6,
and so, as above, we find that the degree of the extension is 6.

(c) Things are more complicated for x4 − 2 = 0. This is x4 = 2. So
we have x2 = ±

√
2, so x = 4

√
2,− 4
√

2, i 4
√

2,−i 4
√

2. To write every
element of this field we need 1, 4

√
2, 4
√

4, 4
√

8, i 4
√

2, i 4
√

4, i 4
√

8, i, and so
the degree is 8.

(d) For x5 − 1 = 0, we have solution 1, e2πi/5, e4πi/5, e6πi/5 and e8πi/5.
However, the sum of these is zero, and so we only need the first four
to write out every element of the field. Thus, this extension has
degree 4.

(e) Here we proceed similarly to in problem 5. We make the substitution
y = x3, giving us the equation y2 + y+ 1 = 0. From above, we know
that the solutions are y = e2πi/3 and e4πi/3. But y = x3, so we need to
take cube roots. We then get e2πi/9, e8πi/9, e14πi/9, e4πi/9, e10πi/9, e16πi/9.
The field extension is Q(e2πi/9), and it is the splitting field of x9 − 1
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as well. This, however, gives us a linear relation, and we can express
e16πi/9 as the sum of the others. Thus, we have a splitting field of
degree 8.

9 To show that a pentagon is constructible, we can show that the vertices
are constructible. The vertices are the fifth roots of unity, that is, the
solutions to x5 − 1. Now, 1 is certainly constructible, and so we divide
by x − 1 to obtain 1 + x + x2 + x3 + x4 = 0. Because x 6= 0, we divide
by x2, and obtain x−2 + x−1 + 1 + x + x2 = 0. Set µ = x + x−1. Then
µ2 = x−2 + x2 + 2, and so our equation becomes µ2 + µ − 1 = 0. So
µ satisfies a degree 2 equation over Q, and so is constructible. Now, we
have µ = x + x−1. Multiplying through by x, we have µx = x2 + 1,
so x2 − µx + 1 = 0, and so x satisfies a quadratic over Q(µ), and so is
constructible. Thus, the fifth roots of unity are constructible, and so the
pentagon is.
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