Homework 12 Solutions

- 1 (a) Let F be a field such that $[F : \mathbb{Q}] = 2$. Then F has a basis of two elements over \mathbb{Q} . We choose one to be 1 and the other to be x. Thus, $x^2 = (-b)x + (-c)1$, becuase it must be in F and everything in F is a linear combination of 1, x. Thus, x satisfies $x^2 + bx + c = 0$. So, in particular, $x = \frac{-b \pm \sqrt{b^2 4c}}{2}$. Now, $F = \mathbb{Q}(x)$, and so $F = \mathbb{Q}(\frac{-b \pm \sqrt{b^2 4c}}{2})$. However, multplication and addition of rational numbers on x doesn't change $\mathbb{Q}(x)$, and so $F = \mathbb{Q}(\sqrt{b^2 4c})$ If $b^2 4c$ has any square factors, we can pull them out, and otherwise clear denominators, so that $F = \mathbb{Q}(\sqrt{d})$ for some $d \in \mathbb{Z}$ which is square free.
 - (b) If $d_1 = d_2$, then $\mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}(\sqrt{d_2})$. Now assume that $\mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}(\sqrt{d_2})$ for two square-free integers. Then $\sqrt{d_1} = a + b\sqrt{d_2}$. Squaring both sides, we obtain $d_1 = a^2 + b^2d_2 + 2ab\sqrt{d_2}$. Now, as a, b, d_1 are rational and $\sqrt{d_2}$ is not, then either a = 0 or b = 0. If b = 0, then $\sqrt{d_1} = a \in \mathbb{Q}$, which is false. Thus, a = 0. Then $\sqrt{d_1} = b\sqrt{d_2}$. And so $d_1 = b^2d_2$. Set $b = \frac{m}{n}$ in lowest terms. Then we have $n^2d_1 = m^2d_2$, which contradicts d_1, d_2 being square-free. Thus, $d_1 = d_2$.
 - (c) The analogue isn't true because the cubic formula requires taking not only cube roots but cube roots of square roots. The analogue of part b is also false, because $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{4})$, as $\sqrt[3]{2}^2 = \sqrt[3]{4}$ and $\sqrt[3]{4}^2 = \sqrt[3]{16} = 2\sqrt[3]{2}$.
- 2 (a) First off, it is a subgroup. Let $x, y \in \mu_{K,n}$. Then $x^n = y^n = 1$. Look at xy^{-1} . Raise this to the *n*th power, and we get $(xy^{-1})^n = x^n(y^{-1})^n = x^n y^{-n} = x^n(y^n)^{-1} = 1$. Now all we must show is that the group is cyclic. It is enough to show this for the splitting field of $x^n - 1$ over K, because the *n*th roots of unity in K will be a subgroup of the *n*th roots of unity over the splitting field, and so if the group is cyclic over the splitting field, the group must always be cyclic, as it will be a subgroup of a cyclic group. So we must just show that the group is cyclic: let $n = \prod d_i$, with $d_i = p_i^{a_i}$. Now, for each i, we have $x^n - 1 = (x^{d_i} - 1)(x^{n-d_i} + x^{n-2d_i} + \ldots + x^{d_i} + 1)$. So d_i of the *n*th roots of unity satisfy $x^{d_i} = 1$, but $n - d_i$ don't.

Furthermore, $x^{d_i} - 1 = x^{p_i^{a_i-1}} - 1)(x^{p_i^{a_i} - p_i^{a_i-1}} + \ldots + 1)$. Thus, of the d_i th roots of unity, $p_i^{a_i-1}$ are actually $p_i^{a_i-1}$ st roots, but the rest

only satisfy $x^{d_i} = 1$. Let u_i be one of these. So u_i has order d_i in the group of d_i th roots of unity. Now, the *n*th roots of unity form a group of order n, and so it can be written as a direct sum of finite groups of orders d_i . As each of these groups is cyclic by the above argument, their product group is cyclic. Thus, $\mu_{K,n}$ is a cyclic group.

- (b) We want to find the group of 12th roots of unity over various fields. For fields containing \mathbb{Q} , this is contained in the intersection of the field with the unit circle in the complex plane. Thus, for $\mathbb{Q}, \mathbb{Q}(\sqrt{3}), \mathbb{R}$, the group of twelfth roots of unity is $\{-1, 1\}$. For $\mathbb{Q}(\sqrt{-1})$, the only elements lying on the unit circle are $\{1, -1, i, -i\}$, all of which are twelfth roots of unity. For $\mathbb{Q}(\sqrt{-3})$, we have the sixth roots of unity (see the next problem). For \mathbb{F}_p , the multiplicative group is of order p-1. So for p = 2, 3, 5, 7, we have p-1 = 1, 2, 4, 6, all of which divide twelve, and so all nonzero elements are 12th roots of unity. For \mathbb{F}_{11} , the multiplicative group is of order $10=2^*5$. So there will only be two twelfth roots, ± 1 , which is $\{1, 10\}$.
- 5 We first make the substitution $y = x^2$. This reduces the equation to $y^2 + y + 1 = 0$, which has solutions $\frac{-1\pm\sqrt{1-4}}{2} = \omega, \omega^2$. However, this gives $x^2 = \omega, \omega^2$, and so we get $x = \omega, -\omega, \omega + 1, -\omega 1$. Thus, all four roots are in $\mathbb{Q}(\omega)$, so the splitting field is contained in $\mathbb{Q}(\omega)$. However, $\mathbb{Q}(\omega)$ is the smallest field containing ω , and so must be contained in the splitting field. Thus, $F(\omega)$ is the splitting field.
- 6 (a) The splitting field of $x^4 + 1$ must contain the solutions to $x^4 + 1 = 0$, that is, $x^4 = -1$. So $x^2 = \pm i$, and $x = \pm \sqrt{\pm i}$. So, we have $\mathbb{Q}(e^{\pi i/4}, e^{-\pi i/4})$. But $e^{-\pi i/4} = e^{7\pi i/4}$, and so the extension is $\mathbb{Q}(e^{\pi i/4})$. Any element of this field can be written as $a + be^{\pi i/4} + ce^{\pi i/2} + de^{3\pi i/4}$, and so the extension has degree 4.
 - (b) Similarly, we want the smallest field with the solutions to $x^6 + 1 = 0$. The sixth roots of -1. This is the field extension generated by $e^{\pi i/6}$, and so, as above, we find that the degree of the extension is 6.
 - (c) Things are more complicated for $x^4 2 = 0$. This is $x^4 = 2$. So we have $x^2 = \pm \sqrt{2}$, so $x = \sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}$. To write every element of this field we need $1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, i\sqrt[4]{2}, i\sqrt[4]{4}, i\sqrt[4]{8}, i$, and so the degree is 8.
 - (d) For $x^5 1 = 0$, we have solution $1, e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}$ and $e^{8\pi i/5}$. However, the sum of these is zero, and so we only need the first four to write out every element of the field. Thus, this extension has degree 4.
 - (e) Here we proceed similarly to in problem 5. We make the substitution $y = x^3$, giving us the equation $y^2 + y + 1 = 0$. From above, we know that the solutions are $y = e^{2\pi i/3}$ and $e^{4\pi i/3}$. But $y = x^3$, so we need to take cube roots. We then get $e^{2\pi i/9}$, $e^{8\pi i/9}$, $e^{14\pi i/9}$, $e^{4\pi i/9}$, $e^{10\pi i/9}$, $e^{16\pi i/9}$. The field extension is $\mathbb{Q}(e^{2\pi i/9})$, and it is the splitting field of $x^9 1$

as well. This, however, gives us a linear relation, and we can express $e^{16\pi i/9}$ as the sum of the others. Thus, we have a splitting field of degree 8.

9 To show that a pentagon is constructible, we can show that the vertices are constructible. The vertices are the fifth roots of unity, that is, the solutions to $x^5 - 1$. Now, 1 is certainly constructible, and so we divide by x - 1 to obtain $1 + x + x^2 + x^3 + x^4 = 0$. Because $x \neq 0$, we divide by x^2 , and obtain $x^{-2} + x^{-1} + 1 + x + x^2 = 0$. Set $\mu = x + x^{-1}$. Then $\mu^2 = x^{-2} + x^2 + 2$, and so our equation becomes $\mu^2 + \mu - 1 = 0$. So μ satisfies a degree 2 equation over \mathbb{Q} , and so is constructible. Now, we have $\mu = x + x^{-1}$. Multiplying through by x, we have $\mu x = x^2 + 1$, so $x^2 - \mu x + 1 = 0$, and so x satisfies a quadratic over $\mathbb{Q}(\mu)$, and so is constructible. Thus, the fifth roots of unity are constructible, and so the pentagon is.