
Homework 11 Solutions

3 (a) See Homework 10. This matrix is diagonalizable if and only if x2 + 1
factors over the field.

(b) The characteristic polynomial is (x−3)2(x2+(−6−a)x+6a−3), and
so the matrix is diagonalizable if and only if x2 − (6 + a)x + 6a − 3
factors over the field. The solution to x2 + (−6 − a)x + 6a − 3 =

0 are x = a+6±
√

(a+6)2−4(6a−3)

2 . The quantity under the root is
(a + 6)2 − 24a + 12 = a2 + 12a + 36− 24a + 12 = a2 − 12a + 48. So
this matrix is diagonalizable if and only if a2 − 12a + 48 is a square.

(c) The characteristic polynomial is x3 +(−a2−4)x2 +(4a2−9a−3)x+
(−a2 + 5a− 6). The matrix is diagonalizable if the field contains all
three roots, which can be obtained via the cubic formula.

4 (a) Subtracting the first from the second twice, gives the system x +
y + z = 0 and y + (a − 2)z = 1, so y = 1 − (a − 2)z. Plugging
this into the first equation gives x + 1 − (a − 2)z + z = 0, which
gives x + 1 + (2 − a)z + z = 0, which is x + 1 + (3 − a)z = 0,
and so x = −1 + (a − 3)z. Thus, the solutions to the system are
(−1 + (a− 3)z, 1− (a− 2)z, z) for all z ∈ R.

(b) This is an inhomogeneous system of four equations in three un-

knowns. Thus, it is only solvable if the matrix


a 1 0 c
1 a 0 c
1 b 0 d
1 1 1 d


is singular. That is, one of the equation is a linear combination of
the others. This will happen only if the determinant of this matrix
is zero. So the system is solvable iff the elements a, b, c, d satisfy
abc− ad + ac− bc− c + d.

4 (a) Set x =
√

2 +
√

3. Then x2 = (
√

2 +
√

3)2 = 2 + 3 + 2
√

6 = 5 + 2
√

6,
x3 = (

√
2 +
√

3)(5 + 2
√

6) = 5
√

2 + 5
√

3 + 4
√

2 + 6
√

3 = 9
√

2 + 11
√

3,
and x4 = (5 + 2

√
6)2 = 25 + 24 + 10

√
6 = 49 + 10

√
6. So we look at

x4 − 10x = −1, and so find that
√

2 +
√

3 satisfies x4 − 10x2 + 1.

(b) The previous part bounds the degree by 4. As it isn’t in Q, it has
degree at least one. So we must merely eliminate the possibility of 2
or 3. Assume it is of degree 2. Then it satisfies an equation of the
form ax2 + bx + c = a(5 + 2

√
6) + b(

√
2 +
√

3) + c = 0. The only
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solution to this is zero, because we must have b = 0, because nothing
can cancel the

√
2, and then a = 0 for the

√
6, adn this implies c = 0.

Similarly, for a cubic, we have ax3 + bx2 + cx + d = 0, which is
a(9
√

2 + 11
√

3) + b(5 + 2
√

6) + c(
√

2 +
√

3) + d = 0. This breaks up
to 9a + c = 0, 11a + c = 0, 5b + d = 0 and 2b = 0. So b = 0, which
implies d = 0, and the system 9a + c = 0 and 11a + c = 0 tells us
that a = c = 0.

(c) The degree of
√

2
√

3 =
√

6 is two. It is not 1, as
√

6 is not rational,
and it satisfies x2 − 6.

8 As b satisfies an equation of degree m over F , it must satisfy the same
equation over F (a), and so F (a, b) is of degree at most mn over F . So
[F (a, b) : F ] ≤ mn. Now, by the Corollary on 209, we have that [F (a) : F ]
and [F (b) : F ] divide [F (a, b) : F ]. So we have a number which is less than
or equal to mn and divisible by m and n, which are relatively prime. The
only possible such number is mn, and so [F (a, b) : F ] = mn.

9 (a) As (F, +) is a finite abelian group, there exists a number n ∈ N such
that for all a ∈ F , na = 0. Let p be the smallest such number. We
claim that p is prime. This is because if it is not, then p = ab, and
for all x ∈ F , we have px = abx = 0, and so a(bx) = 0, which means
that a, bx are zero divisors, because p was the smallest number such
that px = 0 for all x ∈ F . But F , being a field, has no zero divisors,
which gives us a contradiction, so p is prime.

(b) Now, F contains as a subfield Z/pZ, the field consisting of all integer
multiples of the identity. Thus, F is a Zp-vector space. As F is
finite, it is finite dimensional, of dimension n. Thus, we have an
isomorphism F ∼= Zn

p . Isomorphisms are bijections, and so we have
q = |F | = |Zn

p | = |Zp|n = pn, as desired.

(c) The multiplicative group of F has order qn−1, and so for all a ∈ F×,
we have aqn−1 = 1. Multiplying both sides by a, we obtain aqn

= a
for all a ∈ F .

(d) As K is algebraic over F , it is a finite-dimensional F -vector space.
So K ∼= Fm, and so we have |K| = qm. Then the same argument
from the previous part establishes that bqm

= b in K.
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