
Solutions – Problem Set 8 Math 240, Fall 2012

5.6

T/F.2. True. If A is upper or lower diagonal, to make det(A− λI) = 0, we need

product of the main diagonal elements of A− λI to be 0, which means λ is one of

the main diagonal elements of A.

T/F.4. False. For example

[
1 1

0 1

]
and

[
1 0

0 1

]
.

T/F.8. True. The characteristic polynomial has degree n, which has n complex

solutions taking into account of multiplicity.

Prob.8. The transformation T projects any vector onto its y component. From its

geometrical meaning, T i = Tk = 0 and T j = j. Therefore we have two eigenvalues

0 and 1. Eigenvalue 0 has two eigenvectors ri and sk. Eigenvalue 1 has eigenvector

tj. Here r, s, t are arbitrary nonzero real numbers.

Prob.16. A =

3 0 0

0 2 −1

1 −1 2

, A− λI =

3− λ 0 0

0 2− λ −1

1 −1 2− λ

,

det(A− λI) = (3− λ)[(2− λ)2 − 1].

The characteristic has two real solution λ = 3 and λ = 1. λ = 3’s eigenvector

satisfies

(A− 3I)v =

0 0 0

0 −1 −1

1 −1 −1

 v = 0.



There is one linearly independent solution to this equation, which can be taken to

be v3 = r(0, 1,−1). For λ = 1 we have

(A− I)v =

2 0 0

0 1 −1

1 −1 1

 v = 0.

We can solve its eigenvector to be v1 = s(0, 1, 1). Here r, s are arbitrary nonzero

numbers.

Prob.32. First we want to solve v = c1v1 + c2v2 + c3v3 for c1, c2, c3. This is

equivalent to  1 2 −1

−1 1 −1

1 3 2


c1c2
c3

 =

5

0

3

 .
We do a series of row operation on augmented matrix as follows. 1 2 −1 5

−1 1 −1 0

1 3 2 3

 A12(1),A13(−1)−→

1 2 −1 5

0 3 −2 5

0 1 3 −2

 P23−→

1 2 −1 5

0 1 3 −2

0 3 −2 5


A23(−3)−→

1 2 −1 5

0 1 3 −2

0 0 −11 11

 M23(−1/11)−→

1 2 −1 5

0 1 3 −2

0 0 1 −1


.

Therefore c3 = −1, c2 = −2− 3c3 = 1 and c1 = 5− 2c2 + c3 = 2. Therefore

v = 2v1 + v2 − v3.

It follows that

Av = 2Av1 + Av2 − Av3 = 4v1 − 2v2 − 3v3 = (3,−3,−8).

Prob.38. Since det(M) = det(MT ) for any square matrix M , we have

det(A− λI) = det((A− λI)T ) = det(AT − λI).



This means A and AT have the same characteristic equation, hence they have the

same eigenvalues.

5.8

T/F.2. True. If S−1AS = diag(λ1, · · · , λn) and A is invertible, then none of the

λi’s is zero. We have

S−1A−1S = diag(λ−11 , · · · , λ−1n ).

T/F.6. True. If S−1AS = diag(λ1, · · · , λn) then

S−1A2S = diag(λ21, · · · , λ2n).

Prob.8. Since A has rank 1, it only has one non-zero eigenvalue. We can also see

this from direct calculation as follows. A =

−2 1 4

−2 1 4

−2 1 4

,

A− λI =

−2− λ 1 4

−2 1− λ 4

−2 1 4− λ

,

det(A− λI) = det

−2− λ 1 4

λ −λ 0

λ 0 −λ

 = det

3− λ 1 4

0 −λ 0

0 0 −λ

 = (3− λ)λ2.

The characteristic has two real solutions λ = 3 and λ = 0. λ = 3’s eigenvector

satisfies

(A− 3I)v =

−5 1 4

−2 −2 4

−2 1 1

 v = 0.



There is one linearly independent solution to this equation, which can be taken to

be v3 = (1, 1, 1). For λ = 0 we have

Av =

−2 1 4

−2 1 4

−2 1 4

 v = 0.

We can solve its eigenvectors to be v1 = (0, 4,−1) and v2 = (2, 0, 1).

Now we take

S = [v1, v2, v3] =

 0 2 1

4 0 1

−1 1 1

 .
We have

AS = S diag(0, 0, 3), or S−1AS = diag(0, 0, 3).

Remark. In solving the eigenvectors, you might end up getting something totally

different from my answer, that’s completely normal. As long as your answer and

mine are linearly dependent on each other, it’s fine.

Prob.10. We do this problem using the standard procedure just as in the last one.

A =

4 0 0

3 −1 −1

0 2 1

, A− λI =

4− λ 0 0

3 −1− λ −1

0 2 1− λ

,

det(A− λI) = (4− λ)[(−1− λ)(1− λ) + 2] = (4− λ)(λ2 + 1).

The characteristic has one real solution λ = 4 and two imaginary solutions λ = ±i.
λ = 4’s eigenvector satisfies

(A− 4I)v =

0 0 0

3 −5 −1

0 2 −3

 v = 0.



We can solve its eigenvector to be v1 = (17, 9, 6). For λ = i we have

(A− iI)v =

4− i 0 0

3 −1− i −1

0 2 1− i

 v = 0.

We can solve its eigenvector to be v2 = (0, 1,−1− i). And for λ = −i we have

(A− iI)v =

4 + i 0 0

3 −1 + i −1

0 2 1 + i

 v = 0.

We can solve its eigenvector to be v3 = (0, 1,−1 + i).

Now we take

S = [v1, v2, v3] =

17 0 0

9 1 1

6 −1− i −1 + i

 .
We have

AS = S diag(4, i,−i), or S−1AS = diag(4, i,−i).

Prob.22. If A = SDS−1,

A2 = SDS−1SDS−1 = SDDS−1 = SD2S−1.

And for any positive integer k,

Ak = SDS−1SDS−1 · · ·SDS−1 = SDD · · ·DS−1 = SDkS−1.

The equality holds since all the S−1 and S in between D’s cancel each other.

Prob.24. We need to diagonalizeA =

[
−7 −4

18 11

]
first. A−λI =

[
−7− λ −4

18 11− λ

]
.

det(A− λI) = (−7− λ)(11− λ) + 72 = (λ+ 1)(λ− 5). A has two eigenvalues −1

and 5. When λ = −1,

(A− λI)v =

[
−6 −4

18 12

]
v = 0



has eigenvector solution v1 = (2,−3). When λ = 5,

(A− λI)v =

[
−12 −4

18 6

]
v = 0

has eigenvector solution v2 = (1,−3). Therefore we can take

S = [v1, v2] =

[
2 1

−3 −3

]
,

and

D = diag(−1, 5).

It follows from the prob 22, 23 that

A3 = S diag((−1)3, 53)S−1 =

[
−2 53

3 −3× 53

][
1 1/3

−1 −2/3

]
=

[
−2− 53 −2(1+53)

3

3(1 + 53) 1 + 2× 53

]

=

[
−127 −84

378 251

]
,

A5 = S diag((−1)5, 55)S−1 =

[
−2 55

3 −3× 55

][
1 1/3

−1 −2/3

]
=

[
−2− 55 −2(1+55)

3

3(1 + 55) 1 + 2× 55

]

=

[
−3127 −2084

9378 6251

]
.


