4.5

T/F.2. True. The number of vectors is larger than the size of the vectors.

T/F.4. True. Linear dependence in a subset would indicate that of the whole set.

Prob.8. We want to solve

$$\begin{bmatrix} 1 & 2 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & 1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}.$$

We first do the row operations

$$\begin{bmatrix} 1 & 2 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & 1 \\ 3 & -1 & 1 \end{bmatrix} \xrightarrow{A_{12}(1), A_{13}(-2), A_{14}(-3)} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & -3 & 3 \\ 0 & -7 & 4 \end{bmatrix} \xrightarrow{A_{23}(3), A_{24}(7)} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$

This matrix has no free variable columns, which means the only solution we have is a = b = c = 0. Therefore the set of vectors is linearly independent.

Prob.10. We want to solve

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}.$$

We first do the row operations

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \xrightarrow{A_{12}(-1), A_{13}(-3)} \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \xrightarrow{A_{23}(2), M_2(-1/3)} \begin{bmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \cdot \xrightarrow{A_{21}(-4)} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \cdot$$

Therefore we have a = c and b = -2c. This means $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ are linearly dependent and the space spanned by them is described by (taking c = 1)

$$x - 2y + z = 0$$

Prob.20. In the basis of $\{1, x\}$, $p_1 = (a, b)$ and $p_2 = (c, d)$. p_1, p_2 are linearly independent if and only if

$$\det \begin{bmatrix} a & c \\ b & d \end{bmatrix} \neq 0$$

which is the same as

$$ad - bc \neq 0.$$

Prob.30. From $f_1(x) = \sin x, f_2(x) = \cos x, f_3(x) = \tan x$, we get

$$W[f_1, f_2, f_3](x) = \begin{vmatrix} \sin x & \cos x & \tan x \\ \cos x & -\sin x & \sec^2 x \\ -\sin x & -\cos x & 2\sec^2 x \tan x \end{vmatrix}$$
$$= \begin{vmatrix} \sin x & \cos x & \tan x \\ \cos x & -\sin x & \sec^2 x \\ 0 & 0 & (2\sec^2 x - 1)\tan x \end{vmatrix} = \frac{\tan x(2 - \cos^2 x)}{\cos^2 x}.$$

When $x \in (-\pi/2, \pi/2)$, $\tan x \neq 0, 0 < \cos x < 1$, therefore $W[f_1, f_2, f_3](x) \neq 0$, and $f_{1,2,3}$ are linearly independent.

4.6

T/F.2. False. W is isomorphic to any m-dimensional subspace of V but doesn't have to be a subspace itself.

T/F.8. True. Since 10 is bigger than the dimension of $M_3(\mathbb{R})$ which is 9.

T/F.10. True. We can start from any vector in the set and keep adding the linearly independent ones. Since the set spans V, this process will end in getting a basis of V.

Prob.2. We check if $det([v_1, v_2, v_3]) = 0$ as follows.

$$\det([v_1, v_2, v_3]) = \det \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ 1 & 2 & -1 \end{bmatrix} = \det \begin{bmatrix} 1 & 3 & 1 \\ 0 & -7 & -1 \\ 0 & -1 & -2 \end{bmatrix} . = 14 - 1 = 13 \neq 0$$

Therefore the three vectors given form a basis.

Prob.6. We want solve when $det([v_1, v_2, v_3, v_4]) \neq 0$, which is equivalent to $\{v_1, \dots, v_4\}$ forming a basis of \mathbb{R}^4 .

$$\det([v_1, v_2, v_3, v_4]) = \det \begin{bmatrix} 0 & 1 & 0 & k \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ k & 0 & 0 & 1 \end{bmatrix} = -\det \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & k \\ 0 & 1 & 1 & 2 \\ 0 & 0 & k & 1 \end{bmatrix}$$
$$= \det \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & k \\ 0 & 0 & 1 & 2 - k \\ 0 & 0 & k & 1 \end{bmatrix} = 1 - k(2 - k) = (k - 1)^2.$$

Therefore the set of k that makes the set of vectors given a basis is

$$\left\{ k \in \mathbb{R} \, \middle| \, k \neq 1 \right\}.$$

Prob.16. Let
$$M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$
. The defining equation of S is then
$$m_{11} + m_{22} = 0.$$

Therefore we can take m_{12}, m_{21}, m_{22} as free variable and have basis as

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

And $\dim(S) = 3$.

Prob.24. Since dim $(P_2) = 3$ we only have to show p_1, p_2, p_3 are linearly independent. To that end we use Wronskian.

$$W[p_1, p_2, p_3](x) = \begin{vmatrix} 1+x & x^2-x & 1+2x^2 \\ 1 & 2x-1 & 4x \\ 0 & 2 & 4 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2x-1 & 4x \\ 0 & 1 & 2 \\ 1+x & x^2-x & 1+2x^2 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1+x & -x & 1 \end{vmatrix} = 2 \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{vmatrix} = -2 \neq 0.$$

Therefore $\{p_1, p_2, p_3\}$ form a basis of P_2 .

4.8

T/F.6. True. The row-echelon form of an $n \times n$ invertible matrix has n leading ones, which correspond to the basis of colspace with n vectors. Therefore dim(A) = n.

Prob.2. We do row operations to
$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 3 & 4 & -11 & 7 \end{bmatrix}$$
 as follows.
$$\begin{bmatrix} 1 & 1 & -3 & 2 \\ 3 & 4 & -11 & 7 \end{bmatrix} \xrightarrow{A_{12}(-3)} \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} \xrightarrow{A_{21}(-1)} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

Therefore colspace(A) is simply \mathbb{R}^2 and rowspace(A) is spanned by $\{(1, 0, -1, 1), (0, 1, -2, 1)\}.$

Prob.4. As above we do row operations to $A = \begin{bmatrix} 0 & 3 & 1 \\ 0 & -6 & -2 \\ 0 & 12 & 4 \end{bmatrix}$ as follows. $\begin{bmatrix} 0 & 3 & 1 \\ 0 & -6 & -2 \\ 0 & 12 & 4 \end{bmatrix} \xrightarrow{A_{12}(2), A_{13}(-4)} \begin{bmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$ Therefore colspace(A) spanned by $\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$ and rowspace(A) is spanned by $\{(0, 3, 1)\}.$ **T/F.4.** False. Consider the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Its nullity is 1 while all 3 of the diagonal elements are 0.

T/F.6. False. A counterexample is when $m \ge n$, we can take any A with nullity 0 and let B = -A. Nullity of A + B is n while nullity(A)+nullity(B) is 0.

Prob.10. We have the linear system with $A = \begin{bmatrix} 2 & -1 & 1 & 4 \\ 1 & -1 & 2 & 3 \\ 1 & -2 & 5 & 5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 5 \\ 6 \\ 13 \end{bmatrix}$. We do a series of row operation on $[A \mathbf{b}]$ as follows.

$$\begin{bmatrix} 2 & -1 & 1 & 4 & 5 \\ 1 & -1 & 2 & 3 & 6 \\ 1 & -2 & 5 & 5 & 13 \end{bmatrix} \xrightarrow{P_{12}} \begin{bmatrix} 1 & -1 & 2 & 3 & 6 \\ 2 & -1 & 1 & 4 & 5 \\ 1 & -2 & 5 & 5 & 13 \end{bmatrix} \xrightarrow{A_{12}(-2),A_{13}(-1)} \begin{bmatrix} 1 & -1 & 2 & 3 & 6 \\ 0 & 1 & -3 & -2 & -7 \\ 0 & -1 & 3 & 2 & 7 \end{bmatrix}$$
$$\xrightarrow{A_{23}(1)} \begin{bmatrix} 1 & -1 & 2 & 3 & 6 \\ 0 & 1 & -3 & -2 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{A_{21}(1)} \begin{bmatrix} 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -3 & -2 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore $x_1 = x_3 - x_4 - 1$ and $x_2 = 3x_3 + 2x_4 - 7$. We can write the general solution as

$$\mathbf{x} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \mathbf{v_p},$$

where

$$\mathbf{v_1} = \begin{bmatrix} 1\\3\\1\\0 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix}, \quad \mathbf{v_p} = \begin{bmatrix} -1\\-7\\0\\0 \end{bmatrix}.$$

It is easy to check that $\mathbf{v_p}$ is a particular solution of $A\mathbf{x} = \mathbf{b}$ and $\mathbf{v_1}, \mathbf{v_2}$ are two independent solutions of $A\mathbf{x} = \mathbf{0}$. Since the rank of A is 2 from the row operations, the nullity of A is 4-2=2. Therefore $\{\mathbf{v_1}, \mathbf{v_2}\}$ is a basis of the null space of A.

Prob.18. For any \mathbf{x} , since A is invertible

$$AB\mathbf{x} = \mathbf{0} \Leftrightarrow B\mathbf{x} = A^{-1}\mathbf{0} = \mathbf{0}.$$

Therefore

$$\left\{ \mathbf{x} \,\middle|\, AB\mathbf{x} = 0 \right\} = \left\{ \mathbf{x} \,\middle|\, B\mathbf{x} = 0 \right\},\$$

which means their dimensions are the same as well. Therefore

 $\operatorname{nullity}(AB) = \operatorname{nullity}(B).$