4.5

T/F.2. True. The number of vectors is larger than the size of the vectors.

T/F.4. True. Linear dependence in a subset would indicate that of the whole set.

Prob.8. We want to solve

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & -1 & 1 \\
2 & 1 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{0}
$$

We first do the row operations

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & -1 & 1 \\
2 & 1 & 1 \\
3 & -1 & 1
\end{array}\right] \xrightarrow{A_{12}(1), A_{13}(-2), A_{14}(-3)}\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & -3 & 3 \\
0 & -7 & 4
\end{array}\right] \xrightarrow{A_{23}(3), A_{24}(7)}\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & 0 & 3 \\
0 & 0 & 4
\end{array}\right]
$$

This matrix has no free variable columns, which means the only solution we have is $a=b=c=0$. Therefore the set of vectors is linearly independent.

Prob.10. We want to solve

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{0}
$$

We first do the row operations

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \xrightarrow{A_{12}(-1), A_{13}(-3)}\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right] \xrightarrow{A_{23}(2), M_{2}(-1 / 3)}\left[\begin{array}{lll}
1 & 4 & 7 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{A_{21}(-4)}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore we have $a=c$ and $b=-2 c$. This means $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are linearly dependent and the space spanned by them is described by (taking $c=1$)

$$
x-2 y+z=0 .
$$

Prob.20. In the basis of $\{1, x\}, p_{1}=(a, b)$ and $p_{2}=(c, d) . p_{1}, p_{2}$ are linearly independent if and only if

$$
\operatorname{det}\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \neq 0
$$

which is the same as

$$
a d-b c \neq 0 .
$$

Prob.30. From $f_{1}(x)=\sin x, f_{2}(x)=\cos x, f_{3}(x)=\tan x$, we get

$$
\begin{aligned}
W\left[f_{1}, f_{2}, f_{3}\right](x) & =\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
\cos x & -\sin x & \sec ^{2} x \\
-\sin x & -\cos x & 2 \sec ^{2} x \tan x
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
\cos x & -\sin x & \sec ^{2} x \\
0 & 0 & \left(2 \sec ^{2} x-1\right) \tan x
\end{array}\right|=\frac{\tan x\left(2-\cos ^{2} x\right)}{\cos ^{2} x} .
\end{aligned}
$$

When $x \in(-\pi / 2, \pi / 2), \tan x \neq 0,0<\cos x<1$, therefore $W\left[f_{1}, f_{2}, f_{3}\right](x) \neq 0$, and $f_{1,2,3}$ are linearly independent.

4.6

T/F.2. False. W is isomorphic to any m-dimensional subspace of V but doesn't have to be a subspace itself.

T/F.8. True. Since 10 is bigger than the dimension of $M_{3}(\mathbb{R})$ which is 9 .
T/F.10. True. We can start from any vector in the set and keep adding the linearly independent ones. Since the set spans V, this process will end in getting a basis of V.

Prob.2. We check if $\operatorname{det}\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=0$ as follows.

$$
\operatorname{det}\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\operatorname{det}\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & 1 \\
1 & 2 & -1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & 3 & 1 \\
0 & -7 & -1 \\
0 & -1 & -2
\end{array}\right] \cdot=14-1=13 \neq 0
$$

Therefore the three vectors given form a basis.

Prob.6. We want solve when $\operatorname{det}\left(\left[v_{1}, v_{2}, v_{3}, v_{4}\right]\right) \neq 0$, which is equivalent to $\left\{v_{1}, \cdots, v_{4}\right\}$ forming a basis of \mathbb{R}^{4}.

$$
\begin{aligned}
\operatorname{det}\left(\left[v_{1}, v_{2}, v_{3}, v_{4}\right]\right) & =\operatorname{det}\left[\begin{array}{cccc}
0 & 1 & 0 & k \\
-1 & 0 & 1 & 0 \\
0 & 1 & 1 & 2 \\
k & 0 & 0 & 1
\end{array}\right]=-\operatorname{det}\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & k \\
0 & 1 & 1 & 2 \\
0 & 0 & k & 1
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & k \\
0 & 0 & 1 & 2-k \\
0 & 0 & k & 1
\end{array}\right]=1-k(2-k)=(k-1)^{2} .
\end{aligned}
$$

Therefore the set of k that makes the set of vectors given a basis is

$$
\{k \in \mathbb{R} \mid k \neq 1\} .
$$

Prob.16. Let $M=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$. The defining equation of S is then

$$
m_{11}+m_{22}=0
$$

Therefore we can take m_{12}, m_{21}, m_{22} as free variable and have basis as

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

And $\operatorname{dim}(S)=3$.

Prob.24. Since $\operatorname{dim}\left(P_{2}\right)=3$ we only have to show p_{1}, p_{2}, p_{3} are linearly independent. To that end we use Wronskian.

$$
\begin{aligned}
W\left[p_{1}, p_{2}, p_{3}\right](x) & =\left|\begin{array}{ccc}
1+x & x^{2}-x & 1+2 x^{2} \\
1 & 2 x-1 & 4 x \\
0 & 2 & 4
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 2 x-1 & 4 x \\
0 & 1 & 2 \\
1+x & x^{2}-x & 1+2 x^{2}
\end{array}\right| \\
& =2\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
1+x & -x & 1
\end{array}\right|=2\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
1 & 0 & 1
\end{array}\right|=-2 \neq 0 .
\end{aligned}
$$

Therefore $\left\{p_{1}, p_{2}, p_{3}\right\}$ form a basis of P_{2}.

4.8

T/F.6. True. The row-echelon form of an $n \times n$ invertible matrix has n leading ones, which correspond to the basis of colspace with n vectors. Therefore $\operatorname{dim}(A)=$ n.
Prob.2. We do row operations to $A=\left[\begin{array}{cccc}1 & 1 & -3 & 2 \\ 3 & 4 & -11 & 7\end{array}\right]$ as follows.

$$
\left[\begin{array}{llll}
1 & 1 & -3 & 2 \\
3 & 4 & -11 & 7
\end{array}\right] \xrightarrow{A_{12}(-3)}\left[\begin{array}{llll}
1 & 1 & -3 & 2 \\
0 & 1 & -2 & 1
\end{array}\right] \xrightarrow{A_{21}(-1)}\left[\begin{array}{llll}
1 & 0 & -1 & 1 \\
0 & 1 & -2 & 1
\end{array}\right] .
$$

Therefore colspace (A) is simply \mathbb{R}^{2} and rowspace (A) is spanned by $\{(1,0,-1,1),(0,1,-2,1)\}$.
Prob.4. As above we do row operations to $A=\left[\begin{array}{ccc}0 & 3 & 1 \\ 0 & -6 & -2 \\ 0 & 12 & 4\end{array}\right]$ as follows.

$$
\left[\begin{array}{ccc}
0 & 3 & 1 \\
0 & -6 & -2 \\
0 & 12 & 4
\end{array}\right] \xrightarrow{A_{12}(2), A_{13}(-4)}\left[\begin{array}{lll}
0 & 3 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore colspace (A) spanned by $\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$ and rowspace (A) is spanned by $\{(0,3,1)\}$.

T/F.4. False. Consider the matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Its nullity is 1 while all 3 of the diagonal elements are 0 .

T/F.6. False. A counterexample is when $m \geq n$, we can take any A with nullity 0 and let $B=-A$. Nullity of $A+B$ is n while $\operatorname{nullity}(A)+\operatorname{nullity}(B)$ is 0 .
Prob.10. We have the linear system with $A=\left[\begin{array}{llll}2 & -1 & 1 & 4 \\ 1 & -1 & 2 & 3 \\ 1 & -2 & 5 & 5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}5 \\ 6 \\ 13\end{array}\right]$. We do a series of row operation on $[A \mathbf{b}]$ as follows.

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
2 & -1 & 1 & 4 & 5 \\
1 & -1 & 2 & 3 & 6 \\
1 & -2 & 5 & 5 & 13
\end{array}\right] } & \xrightarrow{P_{12}}\left[\begin{array}{ccccc}
1 & -1 & 2 & 3 & 6 \\
2 & -1 & 1 & 4 & 5 \\
1 & -2 & 5 & 5 & 13
\end{array}\right] \xrightarrow{A_{12}(-2), A_{13}(-1)}\left[\begin{array}{ccccc}
1 & -1 & 2 & 3 & 6 \\
0 & 1 & -3 & -2 & -7 \\
0 & -1 & 3 & 2 & 7
\end{array}\right] . \\
& \xrightarrow{A_{23}(1)}\left[\begin{array}{ccccc}
1 & -1 & 2 & 3 & 6 \\
0 & 1 & -3 & -2 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{A_{21}(1)}\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & -1 \\
0 & 1 & -3 & -2 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore $x_{1}=x_{3}-x_{4}-1$ and $x_{2}=3 x_{3}+2 x_{4}-7$. We can write the general solution as

$$
\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{p}}
$$

where

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{\mathbf{p}}=\left[\begin{array}{c}
-1 \\
-7 \\
0 \\
0
\end{array}\right]
$$

It is easy to check that $\mathbf{v}_{\mathbf{p}}$ is a particular solution of $A \mathbf{x}=\mathbf{b}$ and $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are two independent solutions of $A \mathbf{x}=\mathbf{0}$. Since the rank of A is 2 from the row operations, the nullity of A is $4-2=2$. Therefore $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is a basis of the null space of A.

Prob.18. For any \mathbf{x}, since A is invertible

$$
A B \mathbf{x}=\mathbf{0} \Leftrightarrow B \mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}
$$

Therefore

$$
\{\mathbf{x} \mid A B \mathbf{x}=0\}=\{\mathbf{x} \mid B \mathbf{x}=0\}
$$

which means their dimensions are the same as well. Therefore

$$
\operatorname{nullity}(A B)=\operatorname{nullity}(B)
$$

