2.3.T/F. 2

False. These planes might have a line in common.

2.3.T/F. 4

True. If \vec{x} and \vec{y} are two solutions, then any $a \vec{x}+(1-a) \vec{y}$ will be a solution. In other words, all points on the line passing through \vec{x} and \vec{y} are solutions.

2.3.T/F. 6

False. A counter example $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.

2.3.Prob. 12

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{f}(t)
$$

where

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-4 & 3 \\
6 & -4
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
4 t \\
t^{2}
\end{array}\right]
$$

2.3.Pro. 16

$$
\mathbf{x}^{\prime}=\left[\begin{array}{c}
4 e^{4 t} \\
-8 e^{4 t}
\end{array}\right]
$$

and

$$
A \mathbf{x}+\mathbf{b}=A \mathbf{x}=\left[\begin{array}{c}
2 e^{4 t}+2 e^{4 t} \\
-2 e^{4 t}-6 e^{4 t}
\end{array}\right]=\left[\begin{array}{c}
4 e^{4 t} \\
-8 e^{4 t}
\end{array}\right]
$$

Hence

$$
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}
$$

2.4.T/F. 2

False. It doesn't necessarily have leading ones.

2.4.T/F. 4

False. The number of rows doesn't decide the rank.

2.4.T/F. 8

True.

2.4.Prob. 6

It is in REF but not RREF.

2.4.Prob. 12

We start from $\left[\begin{array}{lll}0 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 3 & 5\end{array}\right]$. First do $A_{12}(-1)$ and $A_{13}(-3)$ and we get $\left[\begin{array}{ccc}0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & -4\end{array}\right]$. Another $A_{23}(4)$ leads to $\left[\begin{array}{lll}0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. The rank is 2 .

2.5.T/F. 2

True. 0 is always a solution.

2.5.T/F. 4

True.

2.5.Prob. 16

We do a series of row operation on $[A \mathbf{b}]$ as follows.

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cccc}
1 & -3 & 1 & 8 \\
5 & -4 & 1 & 15 \\
2 & 4 & -3 & -4
\end{array}\right] \stackrel{A_{12}(-5), A_{13}(-2)}{\longrightarrow}\left[\begin{array}{cccc}
1 & -3 & 1 & 8 \\
0 & 11 & -4 & -25 \\
0 & 10 & -5 & -20
\end{array}\right] \xrightarrow{M_{2}(1 / 11)}\left[\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & -4 / 11 \\
-25 / 11 \\
0 & 10 & -5
\end{array}\right)-20}
\end{array}\right] .
$$

Therefore $\mathbf{x}=\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right]$.

2.5.Prob. 48

We do a series of row operation on $[A]$ as follows.

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 0 & -1 & 2 \\
1 & 3 & 2 & 2
\end{array}\right] \xrightarrow{A_{12}(1), A_{13}(-1)}\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 3
\end{array}\right] \xrightarrow{A_{23}(-2)}\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{A_{31}(-1), A_{21}(-1)}\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Let $x_{4}=t$ then $x_{2}=x_{3}=-x_{4}=-t$ and $x_{1}=3 x_{4}=3 t$. Therefore the solutions to the system is

$$
\{(3 t,-t,-t, t) \mid t \in \mathbb{C}\}
$$

or replace \mathbb{C} by any field under consideration.

2.6.T/F. 2

False. For example $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

2.6.T/F. 4

False. A and B can both be non square matrices.

2.6.T/F. 6

True. $(A B)^{-1}=B^{-1} A^{-1}$.

2.6.Prob. 12

We do a series of row operation on $\left[A I_{3}\right]$ as follows.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
2 & 6 & -2 & 0 & 1 & 0 \\
-1 & 1 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{A_{12}(-2), A_{13}(1)}\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
0 & 2 & 4 & -2 & 1 & 0 \\
0 & 3 & 1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{M_{2}(1 / 2)}\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 / 2 & 0 \\
0 & 3 & 1 & 1 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{A_{23}(-3)}\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 / 2 & 0 \\
0 & 0 & -5 & 4 & -3 / 2 & 1
\end{array}\right] \xrightarrow{M_{3}(-1 / 5)}\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 / 2 & 0 \\
0 & 0 & 1 & -4 / 5 & 3 / 10 & -1 / 5
\end{array}\right] \\
& \xrightarrow{A_{31}(3), A_{32}(-2)}\left[\begin{array}{cccccc}
1 & 2 & 0 & -7 / 5 & 9 / 10 & -3 / 5 \\
0 & 1 & 0 & 3 / 5 & -1 / 10 & 2 / 5 \\
0 & 0 & 1 & -4 / 5 & 3 / 10 & -1 / 5
\end{array}\right] \xrightarrow{A_{21}(-2)}\left[\begin{array}{cccccc}
1 & 0 & 0 & -13 / 5 & 11 / 10 & -7 / 5 \\
0 & 1 & 0 & 3 / 5 & -1 / 10 & 2 / 5 \\
0 & 0 & 1 & -4 / 5 & 3 / 10 & -1 / 5
\end{array}\right]
\end{aligned}
$$

Therefore $A^{-1}=\left[\begin{array}{ccc}-13 / 5 & 11 / 10 & -7 / 5 \\ 3 / 5 & -1 / 10 & 2 / 5 \\ -4 / 5 & 3 / 10 & -1 / 5\end{array}\right]$.

2.6.Prob. 30

If $A^{T}=-A$, then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=(-A)^{-1}=-A^{-1}$, hence A^{-1} is skew-symmetric.

2.6.Prob. 34

If $\Delta \neq 0$,

$$
\frac{1}{\Delta}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] A=\frac{1}{\Delta}\left[\begin{array}{cc}
a_{22} a_{11}-a_{12} a_{21} & a_{22} a_{12}-a_{12} a_{22} \\
-a_{21} a_{11}+a_{11} a_{21} & -a_{21} a_{12}+a_{11} a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

