6.1

T/F.6. True. $L(y+u)=L y+L u=L y=F$.

Prob.18. The functions $1, x^{2}, e^{x}, 0$ are all continuous functions on the whole real line. Therefore any initial value will give unique solution. Since $y(x)=0$ does satisfy the equation and the initial condition, it must be THE solution. In other words, the only solution we can find is $y(x)=0$.

Prob.20. Substituting $y(x)=e^{r x}$ into the equation we get

$$
e^{r x}\left(r^{2}-2 r-3\right)=0
$$

Solving this for r we have

$$
r=-1,3 .
$$

Therefore a general solution to the equation can be written as

$$
y(x)=c_{1} e^{-x}+c_{2} e^{3 x} .
$$

Prob.24. Substituting $y(x)=e^{r x}$ into the equation we get

$$
e^{r x}\left(r^{3}-3 r^{2}-r+3\right)=e^{r x}(r-3)\left(r^{2}-1\right)=0 .
$$

Solving this for r we have

$$
r= \pm 1,3 .
$$

Therefore a general solution to the equation can be written as

$$
y(x)=c_{1} e^{3 x}+c_{2} e^{x}+c_{3} e^{-x} .
$$

Prob.32. Substituting $y(x)=x^{r}$ into the equation we get

$$
x^{r}[2 r(r-1)+5 r+1]=0 .
$$

Solving this for r we have

$$
r=-1,-1 / 2
$$

Therefore a general solution to the equation can be written as

$$
y(x)=c_{1} x^{-1}+c_{2} x^{-1 / 2} .
$$

Prob.34. Substituting $y(x)=x^{r}$ into the equation we get

$$
x^{r}[r(r-1)(r-2)+3 r(r-1)-6 r]=x^{r} r\left(r^{2}-7\right)=0 .
$$

Solving this for r we have

$$
r=0, \pm \sqrt{7}
$$

Therefore a general solution to the equation can be written as

$$
y(x)=c_{1}+c_{2} x^{-\sqrt{7}}+c_{3} x^{\sqrt{7}} .
$$

6.2

Prob.6. The auxiliary equation is

$$
r^{2}-6 r+9=(r-3)^{2}=0
$$

Solving this for r we have

$$
r=3,
$$

with multiplicity 2 . Therefore a general solution to the equation can be written as

$$
y(x)=c_{1} e^{3 x}+c_{2} x e^{3 x} .
$$

Prob.12. The auxiliary equation is

$$
r^{2}-2=0
$$

Solving this for r we have

$$
r= \pm \sqrt{2} .
$$

Therefore a general solution to the equation can be written as

$$
y(x)=c_{1} e^{\sqrt{2} x}+c_{2} e^{-\sqrt{2} x}
$$

Prob.22. The auxiliary equation is

$$
\left(r^{2}+3\right)(r+1)^{2}=0
$$

Solving this for r we have

$$
r=-1, \pm i \sqrt{3}
$$

with 1 having multiplicity 2 . The general solution to the equation can be written as

$$
y(x)=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} \sin (\sqrt{3} x)+c_{4} \cos (\sqrt{3} x) .
$$

Prob.38. It's a constant coefficient equation, therefore we still use $e^{r t}$ as our solution. The equation for r is

$$
r^{2}+2 c r+k^{2}=0
$$

When $c^{2}<k^{2}$,

$$
r=-c \pm \sqrt{c^{2}-k^{2}}=-c \pm i \sqrt{k^{2}-c^{2}} .
$$

We have two distinct complex solutions for r. Therefore a general solution is(let $\left.\omega=\sqrt{k^{2}-c^{2}}\right)$

$$
y(t)=c_{1} e^{-c t} \cos (\omega t)+c_{2} e^{-c t} \sin (\omega t) .
$$

Now we plug in the initial condition

$$
y(0)=c_{1}=y_{0},
$$

$$
y^{\prime}(0)=-c c_{1}+\omega c_{2}=0
$$

The solution is

$$
c_{1}=y_{0}, \quad c_{2}=c y_{0} / \omega
$$

Therefore

$$
y(t)=\frac{y_{0}}{\omega} e^{-c t}[\omega \cos (\omega t)+c \sin (\omega t)] .
$$

Let ϕ be an angle s.t.

$$
\sin \phi=\frac{\omega}{\sqrt{c^{2}+\omega^{2}}}=\frac{\omega}{k},
$$

and

$$
\cos \phi=\frac{c}{\sqrt{c^{2}+\omega^{2}}}=\frac{c}{k} .
$$

Then using our favorite trig identity

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

we get

$$
y(t)=\frac{y_{0} k}{\omega} e^{-c t} \sin (\omega t+\phi) .
$$

Since we know $\sin \phi>0, \cos \phi>0, \phi \in(0, \pi / 2)$, which means it's completely determined by its tan value. We can write without ambiguity that

$$
\phi=\tan ^{-1} \frac{\omega}{c} .
$$

This is called damped harmonic oscillator. You can find more about this all over internet, including many nice pictures of it. For example
http://en.wikipedia.org/wiki/Harmonic_oscillator\#Damped_harmonic_oscillator.

Prob.40. The solution will look like

$$
c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x} .
$$

To make it 0 when $x \rightarrow \infty$, we need $r_{1}, r_{2}<0$, if both are real. If both are complex $\left(r_{1,2}=a \pm i b\right)$, then we need $\Re\left(r_{1}\right), \Re\left(r_{2}\right)<0$, which means $a<0$.
If $a_{1}, a_{2}>0$, if r_{1}, r_{2} are both real, we have $r_{1} r_{2}=a_{2}>0$, which means they have the same sign, and $r_{1}+r_{2}=-a_{1}<0$, which mean they are both negative. If
$r_{1,2}=a \pm i b$, then $2 a=-a_{1}<0$, which means $a<0$. From what we said above, both of these cases leads to $y \rightarrow 0$ when $x \rightarrow \infty$.
If $a_{1}>0, a_{2}=0$, we have $r_{1}=-a_{1}$ and $r_{2}=0$, and the solution now looks like

$$
y(x)=c_{1} e^{-a_{1} x}+c_{2} .
$$

Since $a_{1}>0$,

$$
\lim _{x \rightarrow \infty} y(x)=c_{2} .
$$

If $a_{1}=0, a_{2}>0$, we have $r_{1,2}= \pm i \sqrt{a_{2}}$. the solution now looks like

$$
y(x)=c_{1} \cos \left(\sqrt{a_{2}} x\right)+c_{2} \sin \left(\sqrt{a_{2}} x\right),
$$

which is bounded.

6.3

Prob.18. We first obtain the general solution to

$$
y^{\prime \prime}+y=\left(D^{2}+1\right) y(x)=0
$$

as

$$
y_{c}(x)=c_{1} \cos x+c_{2} \sin x .
$$

Since

$$
(D-1) 6 e^{x}=0,
$$

the trial solution $y_{p}(x)$ satisfies

$$
(D-1)\left(D^{2}+1\right) y_{p}(x)=0,
$$

which has general solution as

$$
c_{1} \cos x+c_{2} \sin x+c_{3} e^{x} .
$$

Since the first two terms are already covered in $y_{c}(x)$, we might as well set it to 0 and pick

$$
y_{p}(x)=c_{3} e^{x} .
$$

Plug this in the original equation and we get

$$
2 c_{3} e^{x}=6 e^{x}
$$

Therefore

$$
c_{3}=3 .
$$

And the final answer is

$$
y(x)=c_{1} \cos x+c_{2} \sin x+3 e^{x} .
$$

Prob.20. We first obtain the general solution to

$$
y^{\prime \prime}+16 y=\left(D^{2}+16\right) y(x)=0
$$

as

$$
y_{c}(x)=c_{1} \cos (4 x)+c_{2} \sin (4 x) .
$$

Since

$$
\left(D^{2}+1\right) 4 \cos (x)=0
$$

the trial solution $y_{p}(x)$ satisfies

$$
\left(D^{2}+1\right)\left(D^{2}+16\right) y_{p}(x)=0,
$$

which has general solution as

$$
c_{1} \cos (4 x)+c_{2} \sin (4 x)+c_{3} \cos (x)+c_{4} \sin (x) .
$$

Since the first two terms are already covered in $y_{c}(x)$, we might as well set it to 0 and pick

$$
y_{p}(x)=c_{3} \cos (x)+c_{4} \sin (x) .
$$

Plug this in the original equation and we get

$$
15\left[c_{3} \cos (x)+c_{4} \sin (x)\right]=4 \cos (x)
$$

Therefore

$$
c_{3}=\frac{4}{15}, \quad c_{4}=0
$$

And the final answer is

$$
y(x)=c_{1} \cos (4 x)+c_{2} \sin (4 x)+\frac{4}{15} \cos (x) .
$$

Prob.26. We first obtain the general solution to

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\left(D^{2}+1\right)(D-1) y(x)=0
$$

as

$$
y_{c}(x)=c_{1} e^{x}+c_{2} \cos (x)+c_{3} \sin (x) .
$$

Since

$$
(D+1) 9 e^{-x}=0
$$

the trial solution $y_{p}(x)$ satisfies

$$
\left(D^{2}+1\right)(D+1)(D-1) y_{p}(x)=0
$$

which has general solution as

$$
c_{1} e^{x}+c_{2} \cos (x)+c_{3} \sin (x)+c_{4} e^{-x} .
$$

Since the first three terms are already covered in $y_{c}(x)$, we might as well set it to 0 and pick

$$
y_{p}(x)=c_{4} e^{-x} .
$$

Plug this in the original equation and we get

$$
-4 c_{4} e^{-x}=9 e^{-x}
$$

Therefore

$$
c_{4}=-9 / 4
$$

And the final answer is

$$
y(x)=c_{1} e^{x}+c_{2} \cos (x)+c_{3} \sin (x)-\frac{9}{4} e^{-x} .
$$

