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1. Introduction

My primary research interests lie in the interactions of complex/algebraic geometry with Lie the-

ory and representation theory in the spirit of noncommutative geometry, derived algebraic geometry

and mathematical physics.

Both Lie theory and algebraic geometry have been at the center of the 20th-century mathematical

studies. Entering the 21th century, the two subjects came across each other in a surprising way,

due to the phenomenal work of Kontsevich on deformation quantization of Poisson manifolds ([45])

and the birth of derived algebraic geometry ([46]).

We start from the following observation: in algebraic geometry, the well-known Grothendieck-

Riemann-Roch (GRR) theorem involves the Todd class, which is a characteristic class defined by a

certain formal power series. The same type of class also appears in the Atiyah-Singer index theorem,

which is a generalization of the Riemann-Roch theorem and one of the most important theorems

of the 20th century. On the other hand, the exact same power series also shows up in Lie theory

in a fundamental way, long before the GRR theorem was formulated. Namely, it appears in in the

differential of the exponential map of a Lie group the Baker-Campbell-Hausdorff (BCH) formula in

Lie theory. It (or its inverse) also plays an essential role in the Duflo-Kirillov isomorphism ([28]).

Due to the work of many people, including but not limited to Kapranov [40], Kontsevich [45],

Markarian [48], and Ramadoss [53], it is now clear that the same power series appearing in the two

seemly unrelated cases is not a coincidence. The phenomenon can be explained by a Lie algebra

structure on the shifted tangent bundle TX[−1] of any complex manifold discovered by Kapranov

[40], which arises from the geometry of the diagonal embedding X ↪→ X ×X. One of my projects

is to generalize this to the case of an arbitrary closed embedding X ↪→ Y of complex manifolds,

where more richer structures and phenomena emerge while the situation is more complicated at

the same time.

The second subject is another intersection of Lie theory and algebraic geometry, but now the

interaction is in the opposite direction. I propose a study of representations of semisimple Lie

groups from a geometric perspective. It has been a long time since Mackey observed the surprising

analogy of the representation theory of a real semisimple Lie groupGR and the representation theory

of its Carton motion group. I have discovered that the mysterious seemingly coincidence can be

explained cleanly by regarding D-modules on the flag variety of GR as deformation quantization of

Lagrangian subvarieties of coadjoint orbits. The theory of D-modules invented by Beilinson and

Bernstein ([10]) has been proven to be a powerful tool for the study of representation theory. I

relate it with Kirillov’s orbit method [39] through nonabelian Hodge theory, which might shed a

new light on the relationship between quantization and representation theory.

The third project is joint with Jonathan Block and Nigel Higson. We propose to develope a

noncommutative version of the Oka principle in complex geometry to give a new simplified proof
1
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of the Connes-Kasparov Conjecture/Theorem, which is a special case of the deep Baum-Connes

conjecture in the case of Lie groups.

2. Lie structure in algebraic geometry

2.1. Analogy between Lie theory and algebraic geometry. Let g be a finite dimensional

Lie algebra over a field k of characteristic zero. Then we have the Poincaré-Birkhoff-Witt (PBW)

isomorphism

IPBW : Sg→ Ug (2.1)

of g-modules, where Sg is the symmetric algebra of g and Ug is the universal enveloping algebra

of g.

The PBW isomorphism is not in general an isomorphism of algebras. On the other hand, it was

the fascinating discovery of Kirillov and Duflo [28] that the g-invariant part (Sg)g of Sg with its

usual commutative product and the center (Ug)g of Ug are isomorphic via a ’twisted’ PBW map.

Namely, let J ∈ Ŝg∗ be the formal power series

J(x) = det

(
1− e−adx
adx

)
, (2.2)

where ad : g → End(g) is the linear map defined by adx(y) = [x, y] (x, y ∈ g) and hence ad ∈
g∗ ⊗ End(g) and adn ∈ Tng∗ ⊗ End(g). We regard adn as an element in Sng∗ ⊗ End(g) through

the projection Tng∗ → Sng∗. Then we can define the Duflo map

IDuflo = IPBW ◦ J
1
2 ,

which is an isomorphism of algebras (Sg)g → (Ug)g.

In the past twenty years people realized that there is a surprising analogue of Lie theory in the

realm of algebraic geometry. Consider the diagonal embedding ∆ : X ↪→ X × X of a smooth

variety or complex manifold X. First of all, there is the Hochschild-Kostant-Rosenberg (HKR)

isomorphism ([37], [22], [23])

IHKR : HT •(X) :=
⊕
p+q=•

Hp(X,∧qTX)→ HH•(X), (2.3)

where HT •(X) is the cohomology of the sheaf of holomorphic polyvector fields on X, HH•(X) =

Ext•X×X(O∆,O∆) is the Hochschild cohomolgy of X and O∆ is the derived direct image of the

structure sheaf of X via the diagonal embedding ∆ : X ↪→ X ×X.

Both sides of the HKR isomorphism have natural sturctures of algebras. The exterior product

of polyvector fields makes HT •(X) into a graded commutative algebra, while the Hochschild coho-

mology as an Ext algebra has the Yoneda product. Unfortunately, the HKR map is not an algebra

isomorphism in general. However, Kontsevich discovered that another map IHKR ◦ Td1/2
TX induces

an isomorphism of graded algebras

IDKK : HT •(X)
'−→ HH•(X), (2.4)

where

TdTX = det

(
atTX

1− e−atTX

)
∈
⊕
i

H i(X,Ωi) (2.5)

is the Todd class of TX and Td
1/2
TX acts on the polyvector fields by contraction. Konsevich ob-

served that his solution to the deformation quantization problem makes it possible to prove both
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the Duflo-Kirillov isomorphism and the isomorphism (2.4) in a unified way ([45], [21], [19]). A

more generalized version involving both Hoschschild homology and cohomology was conjectured

by Căldăraru ([23]) and was later proved in [20], which in particular implies the Riemann-Roch

theorem in Dolbeault cohomology.

I aim to extend this deep connection between Lie theory and algebraic geometry to the case of

general embeddings i : X ↪→ Y and study the algebraic structures on the Ext algebra

Ext•Y (i∗OX , i∗OX). (2.6)

Such Ext algebras are related to open string states between D-branes in string theory (see, e.g.,

[43]). The key observation is that all the information we need is about the formal neighborhood

X(∞)

Y of X inside Y .

Ext•Y (OX ,OX) ' Ext•X′(OX ,OX),

where X ′ = X(∞)

Y is the (completed) formal neighborhood of X inside Y . Thus it is the first yet

crucial step to understand the formal neighborhood.

2.2. Dolbeault dga of a formal neighborhood. In [65], I introduced the notion of the Dolbeault

dga (A•(X(∞)

Y ), ∂) of a closed embedding i : X ↪→ Y of complex manifolds. This dga is naturally

defined without any auxilliary choices. In the case of the diagonal embedding ∆ : X ↪→ X × X,

I showed in [66] that the Dolbeault dga is isomorphic to the Dolbeault complex (Ω0,•
X (J∞X ), ∂) of

the jet bundle J∞X and provide a fine resolution of the structure sheaf of the formal space X(∞)

Y

([65]). Hence the Dolbeault dga behaves exactly like the Dolbeault complex of an ordinary complex

manifold (note that it is identical to the usual one when X = Y ).

Just as any holomorphic vector bundle over a complex manifold is equivalent to a smooth vector

bundle equipped with a flat ∂-connection, holomorphic vector bundles and even coherent sheaves

over X(∞)

Y can be captured by modules over the Dolbeault dga A•(X(∞)

Y ). Use the notion of the

perfect dg-category PA of cohesive modules over a dga A introduced by Block [16], I was able to

characterize the derived category of coherent sheaves over the formal neighborhood.

Theorem 2.1 (Yu, [65]). Let i : X ↪→ Y be a closed embedding of complex manifolds and A =

(A•(X(∞)

Y ), ∂) the Dolbeault dga of the formal neighborhood. Assume that X is compact, then the

homotopy category Ho PA of the dg-category PA is equivalent to Db
coh(X(∞)

Y ).

2.3. L∞-algebroid. The analogy described in the previous section is not a coincidence. In his

work on Rozansky-Witten invariants [40], Kapranov realized that the shifted tangent vector bundle

TX[−1] of a complex manifold/algraic variety X is naturally a Lie algebra object in the derived

category Db(X) with the Lie bracket TX[−1]⊗ TX[−1]→ TX[−1] given by the Atiyah class

αTX ∈ Ext1(S2TX, TX)

of TX ([4]). It was then observed by many people (e.g., [48], [53], [54]) that the universal enveloping

algebra of TX[−1] in Db(X) can be realized as (∆∗O∆)∨, whose sheaf cohomology H•(X, (∆∗O∆)∨)

is identified with the Hochschild cohomology HH•(X) (the inverse image functor ∆∗ here and all

functors in due course are understood as derived functors.) In light of this, the HKR isomorphism

(2.3) is the PBW isomorphism for TX[−1] and the isomorphism IDKK (2.4) is the Dulo-Kirillov

isomorphism for TX[−1].

Moreover, Kapranov showed that the Dolbeault resolution (Ω0,•−1
X (TX), ∂) of TX[−1] has an

L∞-algebra structure, unique up to homotopy. Its (completed) Chevelley-Eilenberg (CE) complex
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is isomorphic to the dga (Ω0,•
X (J∞X ), ∂). Namely, there is an isomorphism of dgas

(Ω0,•
X (J∞X ), ∂) ' (Ω0,•

X (Ŝ(T∨X), ∂ + α)), (2.7)

where the differential of the dga on the right hand side is the usual ∂ corrected by α, which is given

by the infinite sum of Atiyah class and all its higher covariant derivatives and corresponds exactly

to the brackets of the L∞-structure on TX[−1].

In my thesis [64], I constructed an isomorphism analogous to (2.7) for a general embedding

(A•(X(∞)

Y ), ∂) ' (Ω0,•
X (Ŝ(N∨)),D), (2.8)

where N∨ is the conormal bundle of the submanifold X. When the ambient manifold Y is Kähler,

I was able to write down an explicit formula for the differential D on the RHS in terms of the

Levi-Civita connection, the curvatures and the second fundamental form of the embedding.

Similar to the Koszul duality between the formal neighborhood of the diagonal embedding and

the L∞-algebra TX[−1], any isomorphism as in (2.8) also gives rise to an L∞-structure on (the

Dolbeault resolution of) the shifted conormal bundle N [−1] of the embedding. In general, however,

the structure maps of this L∞-algebra are no longer OX -linear. Instead, one can read off an ∞-

anchor map ρ : N [−1] → TX from the isomorphism (2.8) by restricting to the degree zero part

S0N∨. The first component ρ1 : N [−1]→ TX gives rise to a cohomology class [ρ1] ∈ Ext1
X(N,TX),

which is the obstruction to the holomorphic splitting of the normal exact sequence

0→ TX → TY |X → N → 0. (2.9)

Hence N [−1] is an L∞-algebroid. Similar results in the algebraic context were established by

Calaque, Căldăraru and Tu ([18]) during the same time when my work was done.

Theorem 2.2 (Yu, [67]). The shifted normal bundle N [−1] of a closed embedding i : X ↪→ Y admits

the structure of an L∞-algebroid, which is unique up to homotopy equivalence. The (completed)

Chevalley-Eilenberg dga (A•X(Ŝ(N∨)),D) of N [−1] is isomorphic to the Dolbeault dga A•(X(∞)

Y ).

Moreover, if Y is Kähler, the structure maps of the L∞-algebroid N [−1] can be constructed explicitly

in terms of differential geometric quantities, such as the connection and curvature of Y and the

shape operator of the submanifold X.

2.4. Quantized analytic cycles and generalized Todd class. Motivated by the work of Kashi-

wara and Schapira ([41], [42]), Grivaux defined in [31] for any (X,σ) the quantized cycle class qσ(X)

in
⊕d

i=0H
i(X,∧iN∨) and proved in [30] the conjecture by Kashiwara that, for the diagonal embed-

ding X ↪→ X ×X, the quantized cycle class is exactly the Todd class of X in
⊕dimX

i=0 H i(X,Ωi
X),

which provides a nice short proof of the Grothendieck-Riemann-Roch theorem in Dolbeault coho-

mology for complex manifolds. Therefore the quantized cycle class can be regarded as a general-

ization of the Todd class. Essentially, qσ(X) measures how the composition of isomorphisms

H•(X,∧•N)
∼−→ Ext•X(OX , i!i∗OX)

∼−→ Ext•X′(i∗OX , i∗OX)
∼−→ Ext•X(i∗i∗OX ,OX)

∼−→ H•(X,∧•N)

deviates from being the identity map, where the first and the last isomorphisms are HKR-type

maps and the second one is by the Grothendieck-Verdier duality. It remained as a question in

Grivaux’s paper [31] to compute qσ(X) in geometric terms for a general quantized cycle (X,σ).

The Dolbeault dga of the formal neighborhood I have constructed and the dg-category of cohesive

modules provide perfect tools to attack Grivaux’s problem. There turns out to be an interesting

cohomology class which serves as an obstruction for the quantized cycle class qσ(X) to look exactly
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like the usual Todd class. To describe this class, we first define the transverse Atiyah class

at⊥X/Y ∈ H
1(X,N ⊗ S2N∨) (2.10)

by pulling back the Atiayh class αTY ∈ H1(Y, TY ⊗S2T∨Y ) of TY to X and applying the projection

TY ⊗ S2TY ∨ → N ⊗ S2N∨ via the splitting σ. There is also a related class at>X/Y ∈ H
1(X,TX ⊗

S2N∨) defined via the projection TY ⊗S2T∨Y → TX⊗S2N∨. Composing at>X/Y with the Atiyah

class atN ∈ H1(X,TX∨ ⊗End(N)) of the normal bundle, we get a class γ ∈ H2(X, (N∨)⊗3 ⊗N).

In [68], I showed that, when the class γ vanishes, the quantized cycle class qσ(X) can be expressed

by the same power series x/(1− e−x) in the definition of Todd class with x replaced by at⊥X/Y and

hence provides an answer to Grivaux’s question. I plan to explain my results in terms of derived

geometry and exploit its relationship with the work of Grady and Gwilliam ([26]) where they gave

a proof of algebraic index theorem using Costello’s homological quantum field theory ([27]).

3. Geometric representation theory

3.1. Mackey analogy. Inspired by the concept from physics of the contraction of a Lie group

to a Lie subgroup ([38]), Mackey suggested in 1975 ([47]) that there should be a correspondence

between “almost” all the irreducible unitary representations of a noncompact semisimple group GR
and the irreducible unitary representations of its contraction to a maximal compact subgroup KR.

The contraction group is defined to be the group

GR,0 := KR n gR/kR,

where gR = Lie(GR) and kR = Lie(KR) are the corresponding Lie algebras and gR/kR is regarded as

an abelian group with the usual addition of vectors. The group GR,0 is called the Cartan motion

group of GR. It is a surprising analogy since the algebraic structures of the groups GR adn GR,0 are

quite different. While the representation theory of the semisimple group GR is rather complicated

and even decades after Mackey, the problem of effective discription of the unitary dual ĜR of

such GR is not fully solved yet. On the other hand, Mackey himself developed a full theory of

representations of semidirect product groups like GR,0, so the unitary dual of GR,0 is much easier

to describe. If the analogy holds in general, it might provide a new approach to the construction

of unitary representations of GR.

Mackey himself was very cautious even after making a number of calculations in support of his

conjecture. One reason is that, even if the analogy holds for parameter spaces, it seems to behave

poorly at the level of representation spaces. For instance, while there are unitary unitary irreducible

representations of GR,0 whose underlying vector spaces are of finite dimensions (on which the gR/kR
part of GR,0 acts trivially), all nontrivial unitary representations of GR are infinite-dimensional.

However, Connes later pointed out that there is a connection between the Mackey analogy and

the Connes-Kasparov conjecture in C∗-algebra K-theory ([5]), which suggests that the reduced dual,

or equivalently, the tempered dual of GR should correspond to the unitary dual of GR,0, at least

K-theoretically. Following Connes’ insight, Higson suggested that the correspondence ought to be

exactly a set theoretical bijection. In other words, Mackey analogy can be thought of as a stronger

version of the Connes-Kasparov conjecture. In his paper [34], Higson examined the case where GR
is a connected complex semisimple group (regarded as a real group) and showed that there is a

natural bijection between the reduced duals of GR and GR,0, with the already known classification

of irreducible tempered representations on both sides in hand. Later in [35], he strengthened this
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result by showing that there is even a natural bijection between the admissible duals of GR and

GR,0 when GR is a complex group.

Whether there is a Mackey bijection between admissble duals when GR is a real group has

remained unsolved for a long time. Recently, Afgoustidis has established a very clean and natural

bijection between the tempered dual ofGR and the unitary dual ofGR,0 using the Knapp-Zuckerman

classification of tempered irreducible representations of GR ([1], [44]), which will be summarized

below. This bijection is in particular an extension of Vogan’s bijection between irreducible tempered

representation of GR with real infinitesimal characters with their unique minimal K-types.

Theorem 3.1 (Vogan, [62]). Any irreducible tempered representations of a real reductive Lie group

GR with real infinitesimal character has a unique KR-type. This gives a bijection between the

equivalence classes of irreducible tempered representations of a real reductive Lie group GR with

real infinitesimal characters and the equivalence classes of irreducible representations of its maximal

compact subgroup KR.

Afgoustidis also studied the analogy at the level of representation spaces, writing down explict

contractions from representations of GR to that of GR,0 in the case of spherical principal series

representations, discrete series and limit of discrete series representations. However, it is not clear

yet if there is a general way to construct such contractions for all tempered representations, even

for those with real infinitesimal characters.

I study the Mackey analogy from the perspective of geometric representation theory. My con-

struction works in general for any admissible representations of GR. It also naturally explains

the ‘finite-dimensional to infinite-dimensional” phenomenon at the level of representation spaces.

My approach is also related to deformation quantization, nonabelian Hodge theory and Kirillov’s

coadjoint orbit method. I will summerize my method below.

3.2. Mackey correspondence. We briefly describe Afgoustidis’s Mackey correspondence for tem-

pered representations at the level of parameter spaces. Suppose GR is a connected real semisimple

Lie group with finite center. Fix a maximal compact subgroup KR of GR. We denote the com-

plexification of GR by G = GC and its Lie algebra by g = gC = gR ⊗R C. Denote by K = KC
the complexification of KR and its Lie algebra by k = kC = kR ⊗R C. Let σR and σ = σC be the

corresponding Cartan involutions of gR and g respectively, which have kR and k as fixed points

respectively. Let pR and p = pC be the −1-eigenspaces of the involutions σR and σ respectively,

so we have gR = kR ⊕ pR and g = k ⊕ p. The motion group GR,0 = KR n pR has Lie algebra

gR,0 = kR n pR, whose complexification is g0 = kn p.

Suppose aR is a maximal abelian subalgebra of pR and a is its complexification. Let Wa be the

Weyl group of the pair (g, a). We consider KR-orbits in p∗R. Any KR-orbit in p∗R intersect with

a∗R at a unique regular Wa-orbit, where we identify a∗R as a subspace of p∗R using the Killing form.

Hence choosing a K-orbit of p∗R is equivalent to choosing a χ ∈ a∗ up to a Wa-symmetry. Denote

the stabilizer of χ in KR by KR,χ. According to Afgoustidis, a Mackey datum is a pair (χ, µ) in

which µ is an irreducible unitary representation of Kχ. Given such a datum, we can produce a

unitary representation M0(δ) of GR,0 by induction:

M0(δ) := IndG0
KR,χnpR

[
µ⊗ eiχ

]
.

Mackey showed that all such M0(δ) give a complete list of irreducible unitary representations of

GR,0. Moreover, two Mackey data δ1 = (χ1, µ1) and δ2 = (χ2, µ2) give rise to unitarily equivalent

representations if and only if there is an element of the Weyl group Wa which sends χ1 to χ2 and
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µ1 to an irreducible Kχ2-representations which is unitarily equivalent with µ2. We say that the

Mackey data δ1 and δ2 are equivalent.

Now we define the Afgoustidis’s Mackey bijection from ĜR,0 → ĜR. Fix a maximal torus T of

KR. Given a Mackey datum δ = (χ, µ), set Tχ = KR,χ∩T . It is a maximal torus of KR,χ. Take the

centralizer aχ of the Lie algebra tχ of Tχ in a and from the vector subgroup Aχ := expG(aχ). The

abelian subgroup Hχ := TχAχ is then a Cartan subgroup of GR. Let Lχ be the centrailizer of Aχ
in GR and we have Lχ = MχAχ, where Mχ is a reductive subgroup of GR. Choose a system ∆+

of postive roots for the pair (g, h) and define the subalgebra nχ of gR as the real part of the sum

of root spaces in g for those positive roots which do not vanish on aχ. Set Nχ := expGR(nχ) and

Pχ := MχAχNχ. Then Pχ is a cuspidal parabolic subgroup.

The KR,χ-representation µ coming with the Mackey datum δ determines a tempered represen-

tation VMχ(µ) of Mχ by Vogan’s theorem. χ determines a one-dimensional unitary rerpresentation

eiχ of Aχ and it extends to a representation of AχNχ where Nχ acts trivially. The work of Harish-

Chandra, Knapp and Zuckerman showed that the induced unitary representation

M(δ) := IndGR
Pχ

[
VMχ(µ)⊗ eiχ

]
of G is irreducible and tempered. Moreover, M(δ1) and M(δ2) are uitarily equivalent if and only if

δ1 and δ2 are equivalent as Mackey data. Therefore the tempered dual of GR and the unitary dual

of GR,0 are both parametrized by Mackey data.

3.3. D-modules. Let us recall the construction of twisted D-modules on the flag variety. Let X

be the flag variety of G, which is the variety of all Borel subalgeras b in g. Let g◦ = OX ⊗C g be

the sheaf of local sections of the trivial bundle X × g. Let b◦ be the vector bundle on X whose

fiber bx at any point x of X is the Borel subalgebra b ⊂ g corresponding to x. Similarly, let n◦

be the vector bundle whose fiber nx is the nilpotent ideal nx = [bx, bx] of the corresponding Borel

subalgebra b. b◦ and n◦ can be considered a subsheaves of g◦. g◦ has a natural structure of Lie

algebroid: the differential of the action of G on X defines a natural map from g to the tangent

bundle TX of X and hence induces an anchor map τ : g→ TX. The Lie structure on g is given by

[f ⊗ ξ, g ⊗ η] = fτ(ξ)g ⊗ η − gτ(η)f ⊗ ξ + fg ⊗ [ξ, η]

for any f, g ∈ OX and ξ, η ∈ g. The kernel of τ is exactly b◦, so b◦ and n◦ are sheaves of Lie ideals

in g◦.

We then form the universal enveloping algebra of the Lie algebroid g◦, which is the sheaf Ug◦ =

OX⊗CUg of associative algebras. The sheaf of left ideals Ug◦n◦ generated by n◦ in Ug◦ is a sheaf of

two-sided ideals in Ug◦, hence the quotient Dh = Ug◦/Ug◦n◦ is a sheaf of associative algebras on X.

The natural morphism from g◦ to Dh induces an inclusion of h◦ = b◦/n◦ into Dh. h◦ turns out to

be a trivial vector bundle and its global sections over X is the abstract Cartan algebra h of g, which

is independent of the choice of its embedding into borel subalgebras. Moroever, Uh = Γ(X,Dh)
G.

For any λ ∈ h∗, set Dλ = Dh ⊗Uh Cλ+ρ, which is a sheaf of twisted differential operators. Then

the Beilinson-Bernstein localization theorem ([10]) says that the category of quasicoherent sheaf of

Dλ-modules is equivalent to the category of Ug-modules with infinitesimal character λ by taking

global sections.

Under the Beilinson-Bernstein equivalence, (g,K)-modules correspond to Harish-Chandra sheaves,

which are K-equivariant holonomic Dλ-modules. The standard way to produce an irreducible

Harish-Chandra sheaf is to take a K-orbit Q in X together with an irreducible K-homogeneous

connection φ on Q, which satisfies certain compatibility condition with λ, and then push forward
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φ to a Dλ-module I(Q,φ) on X, called the standard Harish-Chandra sheaf attached to (Q,φ). For

generic λ, I(Q,φ) is irreducible and produces an irreducible (g,K)-module, otherwise it contains

a unique irreducible subsheaf of Dλ-modules, denoted by L(Q,φ). With certain assumptions on λ

and Q, this gives a geometric classification of the admissible representations of GR.

3.4. “Localization” of GR,0-representations. I am going to describe how to realize (g0,K)-

modules as geometric objects on the flag variety X and how twisted D-modules deform to them.

Since I will consider the entire admissible duals of both groups, the Lie algebras involved here are

all complex. First of all, g0 and g fit into a continous family of Lie algebras gt, t ∈ C, with the

fiber at t = 0 being the Lie algebra g0 and other fibers gt, t 6= 0, isomorphic to g. A convenient

way to describe it is as follows: take the trivial vector bundle C × g and regard it as a sheaf of

OC-modules over the affine line C. It is a sheaf of Lie algebras and its module of global sections is

g[t] = g⊗C C[t], where t is the coordinate function of C. Then we can think of gt as the subsheaf

in C× g of germs sections which take values in k ⊂ g at 0 ∈ C. In other words, gt = k⊕ tp. This is

a sheaf of Lie subalgebras.

We can extend this construction the flag variety X and form the trivial vector bundle g◦[t] =

X×C×g and its subsheaf g◦t = k[t]⊕tp◦[t] of germs of local sections which take values in the trivial

vector bundle k◦ = X × k over X × {0}. Both are Lie algebroids over X × C whose anchor maps

are induced by the group actions on X and take values in TX[t] = TX ⊗C C[t]. g◦t is a subsheaf of

Lie ideals of g◦[t]. Global sections of g◦t is exactly gt. Similarly, we form the pullback b◦ and n◦ to

vector bundles b◦[t] and n◦[t] over X × C respectively. We form the sheaf of universal enveloping

algebras U(g◦[t]) and the sheaf of subalgebras U(g◦t ). Analogous to the case of one single X, we

have the subsheaf of two-sided ideals In = U(g◦[t])n◦[t] of U(g◦[t]). Similar to the construction of

the sheaf Dh, we define Dh,t := Ug◦t /(Ug◦t ∩ In). Note that this is no longer a local free sheaf over

X×C. The restriction of Dh,t to X×{t} for t 6= 0 is isomorphic to Dh, yet its restriction Dh,t/tDh,t

to t = 0 is not locally free since the intersection of k◦[t] ⊂ g◦[t] with n◦[t] is not. However, those

sheaves locally free when restricted to K-orbits of X, as we will see below.

Now assume a K-orbit Q in X is given. Denote the embedding by i : Q ↪→ X. I am going

to construct an analogue of the transfer bimodule used to form direct images of usual twisted

D-modules. Set

Dh,Q := i−1(Dh,t)⊗i−1OQ ωQ/X

where ωQ/X is the relative canonical bundle of Q in X. It is a left i−1(Dh,t)-module. The restriction

of k◦[t] to the K-orbit Q is still a Lie algebroid, even though g◦ no longer is, and U(k◦[t]) acts on

Dh,Q from right.

We want to construct the analogue of Dλ for Q × C. We still write g◦, g◦t , b◦, n◦ for their

restrictions to Q. Set b◦t := g◦t ∩ b◦[t] and n◦t := g◦t ∩ n◦[t]. Since over the K-orbit the sheaves

b◦ ∩ k◦ and n◦ ∩ k◦ have geometric fibers with constant ranks and hence are locally free, b◦t and

n◦t are also locally free over Q × C. The fiber b0,x of the restriction b◦0 = b◦t |Q×{0} can be thought

of as the contraction of the Borel subalgebra bx to a subalgebra of g0. Analogously for n◦0. We

define h◦Q,t = b◦t /n
◦
t . It is canonically isomorphic to the trivial vector bundle h◦|Q[t] over Q × C.

The choice of the K-orbit Q determines an involution σQ on the abstract Cartan subalgebra h,

which gives rise to a decomposition h = tQ ⊕ aQ. We have a natural isomorphism mt : h◦[t] =

t◦Q[t]⊕ a◦Q[t]→ h◦Q[t] = t◦Q[t]⊕ ta◦Q[t] by multiplication the a◦Q[t] part by t.

One can show that there is an isomorphism Dh,Q ' (Ug◦t /Ug◦tn◦t )⊗OQ ωQ/X , where we only use

the pointwise multiplication of the bundle Ug◦t . Then we have h◦Q,t acting on Dh,Q from the right and

so is Uh◦Q,t. For a given λ ∈ h∗, we can take any λ(t) ∈ h∗[t], in particular, λ(t) = λ+ ρ|tQ + tρ|aQ .
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This determines a character λt := λ(t) ◦ (m−1
t ) = λ|tQ + (λ|aQ/t) + ρ of hQ,t (written as an element

in t∗Q[t]⊕ t−1a∗Q[t]). We then set

Dλ(t)
Q := Dh,Q ⊗Uh◦Q,t (C[t])λt .

Dλ(t)
Q inherits a right U(k◦[t])-module structure from that of Dh,Q. The specialization of Dλ(t)

Q to

any t 6= 0 is isomorphic to DλtX←Q = (i−1Dλt)⊗ ωQ/X on Q, which is exactly the transfer bimodule

used to define the direct image functor of twisted D-modules.

Now for any K-homogeneous connection φ on Q which is compatible with λ+ ρ restricted to tQ,

we set

I(λ(t), Q, φ) = Ri∗

(
Dλ(t)
Q ⊗Uk◦ φ

)
.

It is a left Dh,t-module. The specialization of I(λ(t), Q, φ) to t = 1 is a Dλ-module over X, hence

its global sections give a (g,K)-module with infinitesimal character λ1 = λ. When λ is regular and

antidominant, it has a unique irreducible submodule, denoted by M(λ,Q, φ). The global sections

of the specialization I0(λ,Q, φ) := I(λ(t), Q, φ)|t=0 give a (g0,K)-module, denoted by M̃0(λ,Q, φ)

. For generic values of λ it is irreducible. In general, let χ = λ|aQ and regard χ as an element in

p∗, then the Lie algebra of its stabilizer Kχ in K has Cartan subalgebras isomorphic to tQ. The

restriction of λ+ ρ to tQ determines a irreducible representation µ of Kχ (or KR,χ). We therefore

get a Mackey data δ = (χ, µ) and the associated representation M0(δ) of GR,0, when the data

considered are all real.

Theorem 3.2. The (g0,K)-module M̃0(λ,Q, φ) has a unique irreducible quotient, denoted by

M0(λ,Q, φ), which is isomorphic to the Harish-Chandra module of M0(δ).

In [50] Mirkovic showed that (g,K)-modules of the form M(λ,Q, φ) give all (the Harish-Chandra

modules of) the tempered representations of GR with certain assumptions on the triple (λ,Q, φ).

Hence we have,

Theorem 3.3. The correspondence M(λ,Q, φ)←→M0(λ,Q, φ) coincides with Afgoustidis’s Mackey

correspondence if we restrict to tempered representations of GR and unitary representations of G0.

In my approach, it is natural to expect that

Conjecture 3.4. The Mackey bijection can be extended to the entire admissible duals of G and

G0.

3.5. Deformation quantization of twisted characteristic cycles. In fact, there is geometric

meaning for the sheaf I0(λ,Q, φ) above: λ|aQ considered as an element in g∗ determines a G-

coadjoint Oλ in g∗, which is a twisted cotangent bundle over the flag variety X. The intersection

Yλ = Oλ∩p∗ is a K-equivariant affine variety, which for generic λ is a single smooth closed K-orbit.

The stabilizer of λ|aQ as a point in Yλ is exactly the complexification of Kχ, and hence the Kχ

representation µ determines a K-equivariant vector bundle Lµ over Oλ. Its direct image under the

projection Oλ → X is exactly the sheaf I0(λ,Q, φ). Moreover, Yλ is Lagrangian subvariety of Oλ
with respect to the holomorphic Kirillov-Kostant-Souriau (KKS) symplectic form.

The pair (Yλ,Lµ) is similar to the notion of characteristic cycles of representations ([55]). While

the usual characteristic cycle is always a Lagrangian subvariety of the cotangent bundle of the flag

variety X so it loses the information about the infinitesimal character of the representation, Yλ is a

subvariety of a twisted cotangent bundle of X and together with the bundle Lµ they keep enough

information to recover the representation of GR.
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3.6. The example of SL(2,R). Let me illustrate the general framework above in the case of

SL(2,R). Here we take GR = SU(1, 1) since SU(1, 1) is conjugate to SL(2,R) inside G = SL(2,C)

and the formulas have simpler appearance. The flag variety is X = P1. We denote by θ ∈ h∗ the

positive root of g and hence ρ = 1
2θ. We put c = θ̌ (λ), where θ̌ ∈ h is the dual root of θ. The Lie

algebra

g = sl(2,C) =

{(
α β

γ −α

) ∣∣∣∣ α, β, γ ∈ C
}

has the standard basis

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
satisfying the standard commutation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (3.1)

We define the coordinate z on P1−{∞} by z([x0 : 1]) = x0 to identify P1−{∞} with the complex

plane C. Then we get a trivialization of Dλ in which

e = −∂z, f = z2∂z + (c+ 1)z, h = −2z∂z − (c+ 1).

We obtain a second trivialization on the open K-orbit C∗ ⊂ C by the automorphism of DC∗ induced

by

∂z 7→ ∂z −
c+ 1

2z
= z

c+1
2 ∂zz

− c+1
2

which satisfies

e = −∂z +
c+ 1

2z
, f = z2∂z +

c+ 1

2
z, h = −2z∂z.

In other words, The trivialization is via the canonical isomorphism Uk◦|Q ' Dλ|Q induced by the

composition Uk◦ ↪→ Dh � Dλ (since the stabilizer of the K-action on Q is discrete in this case), so

that the expression for H does not change when λ varies. The open K-orbit is related to principal

series representations of GR. As indicated above, we replace c by c/t to get the family. Equivalently,

set

et = t

(
−∂z +

1

2z

)
+

c

2z
, ft = t

(
z2∂z +

1

2
z

)
+
c

2
z, ht = h = −2z∂z,

and the triple (et, ft, ht) still satisfies the commutation relation (3.1) when t 6= 0. When t = 0,

(e0, f0, h0) forms a basis of the Lie algebra g0 of the motion group. Moreover, the S(p)-module

structure is determined by the relation e0f0 = c2/4, so the Lagrangian subvariety correponding

to principal series representations with infinitesimal character λ is the intersection of p with the

coadjoint orbit in g determined by the equation

α2 + βγ =
c2

4
,

where we identify g with g∗ using the Killing form.

3.7. Extended Kostant-Sekiguchi-Vergne correspondence and Matsuki correspondence.

The nonabelian Hodge theory ([57]) gives a bijection between the moduli space of flat connections

over a punctured Riemann surface and the moduli space of Higgs bundles. It specializes to the

Nahm’s equations, which was used by Vergne to establish the Kostant-Sekiguchi-Vergne (KSV)

correspondence and gave diffeomorphisms between the nilpotent GR-orbits in g∗R and the nilpotent

K-orbits in p∗ ([56], [61]). Later Bielawski and Biquard extended it to a correspondence between
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general coadjoint orbits in gR and K-orbits in p∗ ([12], [13]). I plan to show that this extend

the correspondence such that it is compatible with the Mackey correspondence. Namely, any

repesentation V0 of GR,0 is determined by a K-orbit and an K-equivariant vector bundle. The

corresponding coadjoint orbit in g∗R under the KSV correspondence is exactly the orbit associated

to the corresponding GR-representation V under the Mackey analogy via the usual orbit method.

Moreover, I plan to show that the KSV correspondence and the Mackey correspondence fit nicely

with the Matsuki correspondence ([49], [51], [55]).

Even in the case of SL(2,R), this new perspective provides a solution to the unsettled debate in

orbit method over what representations should be assigned to the nilpotent orbits. For instance,

from the KSV correspondence it seems to natural to assign the two limit of discrete representations

to the two half cones and the two spherical principal series representations to the entire nilpotent

orbits.

In [33] Gukov and Witten proposed to use hyperkähler structures on complex coadjoint orbits

and string theory to quantization branes to get unitary representations. In particular, they suggest

a way to obatin complementary representations of SL(2,R). I hope that my approach will make

their construction more precise.

4. Oka principle and Connes-Kasparov

Let G be a reductive Lie group. The representation theory of G is closely related to various

convolution algebras of functions on the group. From the perspective of noncommutative geometry,

the natural algebra to study is the reduced group C∗-algebra C∗r (G), which captures the tempered

dual of G. The well-known Connes-Kasparov Conjecture calculates the K-theory of C∗r (G) in terms

of its maximal compact subgroup K ([6]).

Together with Jonathan Block and Nigel Higson, we want to give a new proof of Connes-Kasparov

from a complex geometric perspective. We consider a second convolution algebra, Harish-Chandra’s

Schwartz algebra HC(G) of smooth functions which decay faster than any polynomial weight at

infinity (and the same for all derivatives). HC(G) captures the tempered dual of G and, by a

deep and difficult theorem of Arthur ([3]), it is isomorphic under a Fourier-type transform to the

algebra of Schwartz sections on the tempered dual with valued in the bundle of tempered unitary

irreducible representations. However, the result requires hard harmonic analysis on the group.

Hence we consider the third convolution algebra, Casselman’s Schwartz algebra S(G) ([24])

of smooth functions on G which decay faster than any exponential weight at infinity (and the

same for all derivatives). The important Casselman-Wallach globalization theorem essentially as-

serts that any Harish-Chandra module of G can be embedded into a smooth admissible moderate

growth Fréchet representation (SF -representation) of G, which is unique up to isomorphism. An

SF -representation is equvalently a nondegenerate continuous S(G)-module. Hence S(G)-modules

essentially captures the admissible dual of G. Analogous to the theorem of Arthur and the usual

Paley-Wiener theorem, S(G) can be viewed hypothetically as holomorphic sections with Schwartz-

type decay of some bundle over the admissible dual. Following the philosophy that admissible dual

is some kind of complexification of the tempered dual and the tempered dual is a retraction of

the admissible dual, we propose to consider the algebra Ahol = S(G)⊗Zg O(h)W , where Zg is the

center of the universal enveloping algebra Ug and acts on S(G) as bi-invariant differential oper-

ators, which by Harish-Chandra isomorphism is the same as the algebra of polynomial functions

on the dual of a Cartan algebra h invariant under the action of the Weyl group W , and O(h∗)W

is the W -invariant of the algebra of holomorphic functions over h∗ with certain Schwartz decay.
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Similarly let C(h∗)W be the algebra of smooth Schwartz functions over h with W -symmetry and

form A = S(G)⊗Zg C(h∗)W . Both Ahol and A are Fréchet algebras.

Inspired by the Oka principle ([52]) in classical comlex geometry, which essentially states that

the category of smooth vector bundles over a Stein complex manifold is equivalent to the category

of holomorphic vector bundles over the same manifold, and a noncommutative version by Bost

([17]), we make the following conjecture.

Conjecture 4.1. The natural homomorphism Ahol → A induces an isomorphism between the

topological K0-groups,

K0(S(G)⊗Zg O(h∗)W )
∼−→ K0(S(G)⊗Zg C(h∗)W ). (4.1)

We also conjecture that K0(A) ' K0(HC(G)). Since K0(HC(G)) ' K0(C∗r (G)), the right hand

of the isomorphism (4.1) is the same as K0(C∗r (G). K0(S(G)⊗ZgO(h)W ) is easier to compute and

the isomorphism (4.1) is essentially equivalent to the Connes-Kasparov isomorphism.
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