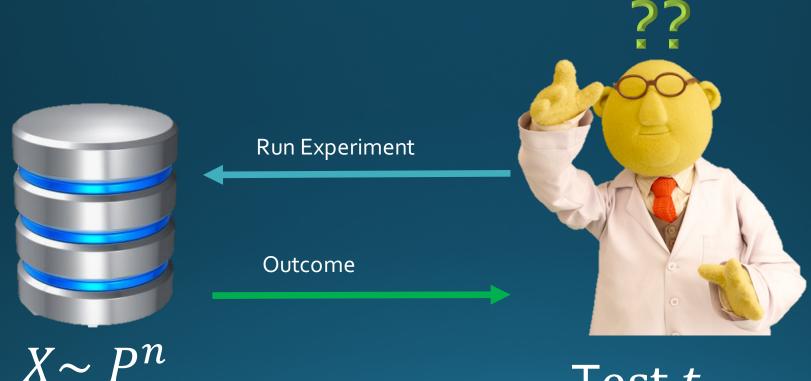
Max-Information, Differential Privacy, and Post-Selection Hypothesis Testing

Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar



Test *t*

Run Experiment

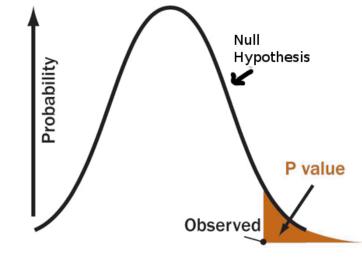
Outcome

Science AAAS

Test *t*

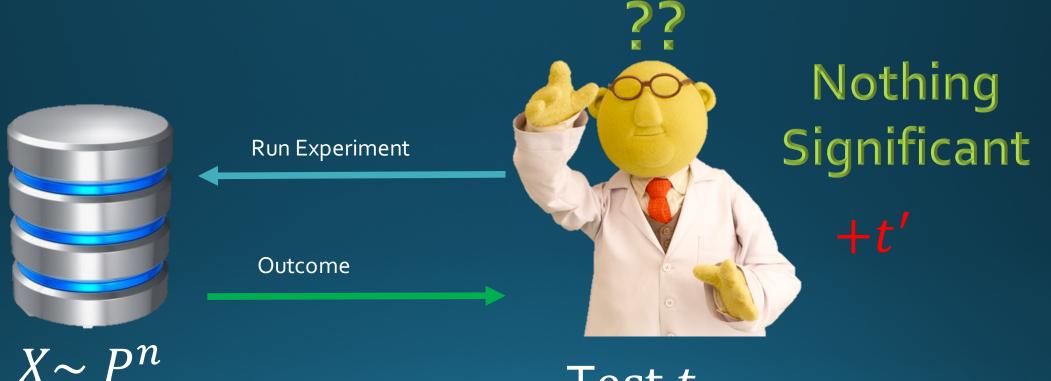
Application: Hypothesis Testing

- Hypothesis test is defined by a test statistic $t: D^n \to \mathbb{R}$ and a null hypothesis $H_0 \subseteq \Delta(D)$.
- The *p*-value associated with a value *a* and a distribution $P \in H_0$ is given as $p(a) = \Pr_{x \sim P^n}[t(x) > a]$
 - Denotes the probability of observing a value of the test statistic that is at least as extreme as a.

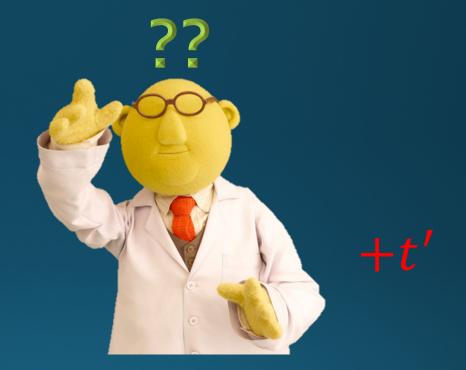


Application: Hypothesis Testing

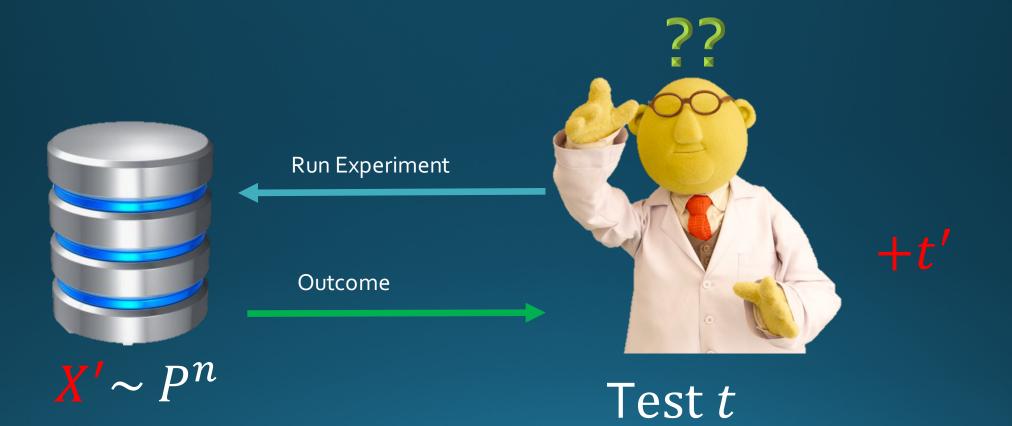
- The goal is to reject H₀ if the data is not likely to have been generated from that model.
- Note that $p(t(X)) \sim U[0,1]$ if $X \sim P^n$ where $P \in H_0$.
- If we reject the model when $p(t(x)) < \alpha$ then False Discovery $< \alpha$.



Test *t*



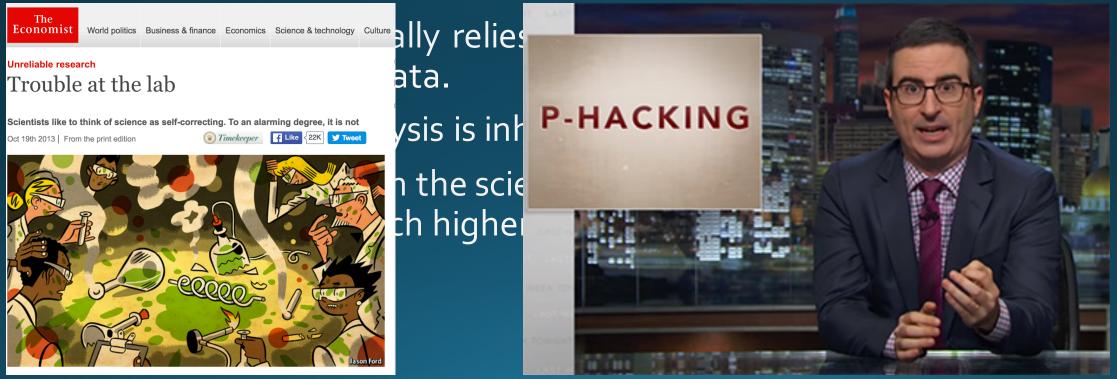
Test *t*

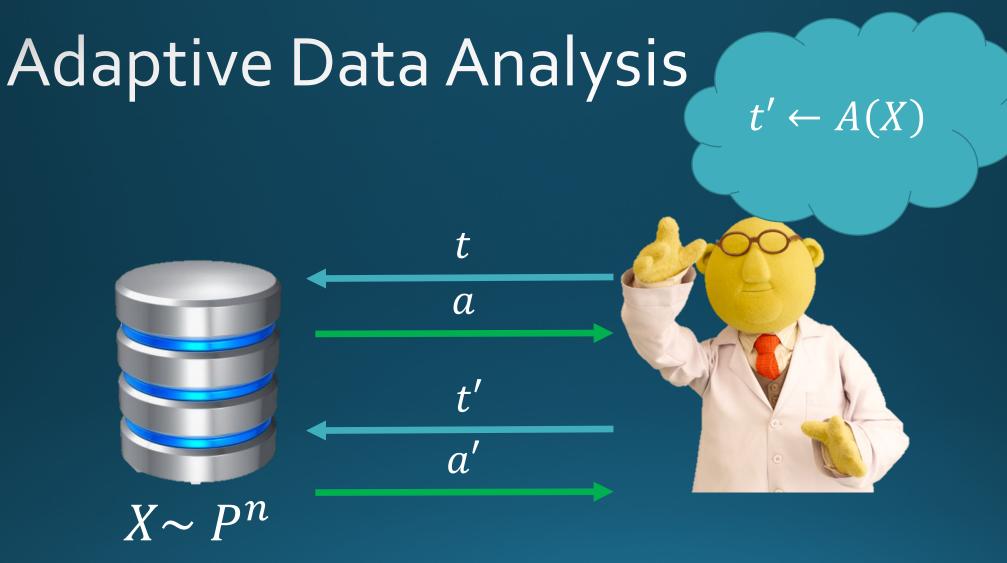


Need the choice of test to be independent of the data

False Discovery

 Rejecting a true null hypothesis should occur in at most an α fraction of the tests.





Problem: p(t'(X)) is no longer uniform.

Valid p-Value Correction

- Even when we use the data to determine a test, we still want to be able to control the false discovery rate.
- A function $\gamma: [0,1] \rightarrow [0,1]$ is a valid *p*-value correction function for a selection procedure $A: D^n \rightarrow T$ if for every α the procedure:
 - 1. Select test $t \leftarrow A(X)$
 - 2. Reject H_0 if $p(t(X)) < \gamma(\alpha)$

has probability at most α of false discovery.

 We will assume that the selection procedure A satisfies some property

Max-Information [DFHPRR15]

- An algorithm $A: D^n \to T$ with bounded max-info allows the analyst to treat A(X) as if it is independent of data X up to a correction factor determined be the max-info bound.
- The β -approximate max-info between two random variables Y and Z is

$$I_{\infty}^{\beta}(Y;Z) = \log\left(\sup_{\substack{O:\Pr[(Y,Z)\in O] > \beta}} \frac{\Pr[(Y,Z)\in O] - \beta}{\Pr[Y\otimes Z\in O]}\right)$$

• If $\Pr_{(Y,Z)\sim(Y,Z)}\left[\frac{\Pr[(Y,Z)=(Y,Z)]}{\Pr[Y=Y]\Pr[Z=Z]} \ge 2^{k}\right] \le \beta$ then $I_{\infty}^{\beta}(Y;Z) \le k$.

Max-Information [DFHPRR15]

- We say that an algorithm A has β -approximate max-info at most k, denoted as $I_{\infty}^{\beta}(A, n) \leq k$ if for every distribution S over datasets D^n we have $I_{\infty}^{\beta}(X; A(X)) \leq k$ where $X \sim S$.
- It will be important to distinguish max-info over product distributions, denoted $I_{\infty,\Pi}^{\beta}(A,n)$, which is the same as above except *S* can only be a product distribution, i.e. $S = P^n$ for some *P* over *D*.

Max-Info gives Valid p-Value Corrections

• If we have selection procedure A such that $I^0_{\infty,\Pi}(A,n) \leq k$ then a valid p-value correction function is

$$\gamma(\alpha) = \frac{\alpha}{2^k}$$

• Proof: Let $O \subseteq D^n \times T$ be the event that A selects a test statistic where the p-value is at most $\gamma(\alpha)$, but the null is true. $\Pr[p(t(X)) \leq \gamma(\alpha) \cap t = A(X)]$ $= \Pr[(X, A(X)) \in O]$ $\leq 2^k \Pr[X \otimes A(X') \in O]$

Max-Info gives Valid p-Value Corrections

• If we have selection procedure A such that $I^{\beta}_{\infty,\Pi}(A,n) \leq k$ then a valid *p*-value correction function is

$$\gamma(\alpha) = \frac{\alpha - p}{2^k}$$

• Proof: Let $O \subseteq D^n \times T$ be the event that A selects a test statistic where the *p*-value is at most $\gamma(\alpha)$, but the null is true. $\Pr[p(t(X)) \leq \gamma(\alpha) \cap t = A(X)]$ $= \Pr[(X, A(X)) \in O]$ $\leq 2^k \Pr[X \otimes A(X') \in O] + \beta$ $\leq \gamma(\alpha)$

Mutual Info gives Valid p-Value Corrections

• For test selection $A: D^n \to T$ with mutual info $I(X; A(X)) \le m$ for any P where $X \sim P^n$, we can also obtain a valid p-value correction with the result from [RZ16], which leads to

$$\gamma(\alpha) = \min\left\{\frac{2 - \alpha}{2}\right\}$$

α

• However, a bound on mutual information of m give for any k > 0,

$$I_{\infty,\Pi}^{\beta(k)}(A,n) \leq k$$
 where $\beta(k) \leq \frac{n}{2}$

We improve by using max-info for $\alpha \le 0.05$ when $m \ge 0.05$

Thus, when we have a bound on the mutual informatio.
following valid p-value correction

$$(\alpha) = \frac{\alpha 2^{\frac{-2}{\alpha}(m+1)}}{2}$$

Stability with Low-Sensitivity Queries

- From [BNSSSU'16] we know that other notions of stability lead to ways to estimate the values of adaptively chosen queries on the data:
 - Bound |q(X) q(X')| where $q \leftarrow A(X)$ w.h.p. over $X \sim P^n$ and A.
- A query $q: D^n \to \mathbb{R}$ is low sensitive if for any two datasets x, x' that differ in one entry we have

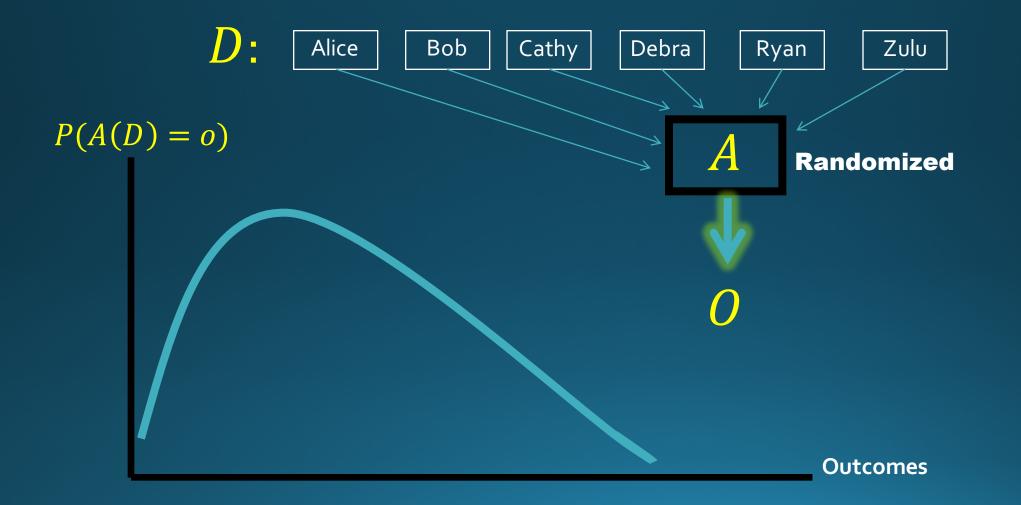
 $|q(x) - q(x')| \le \Delta$

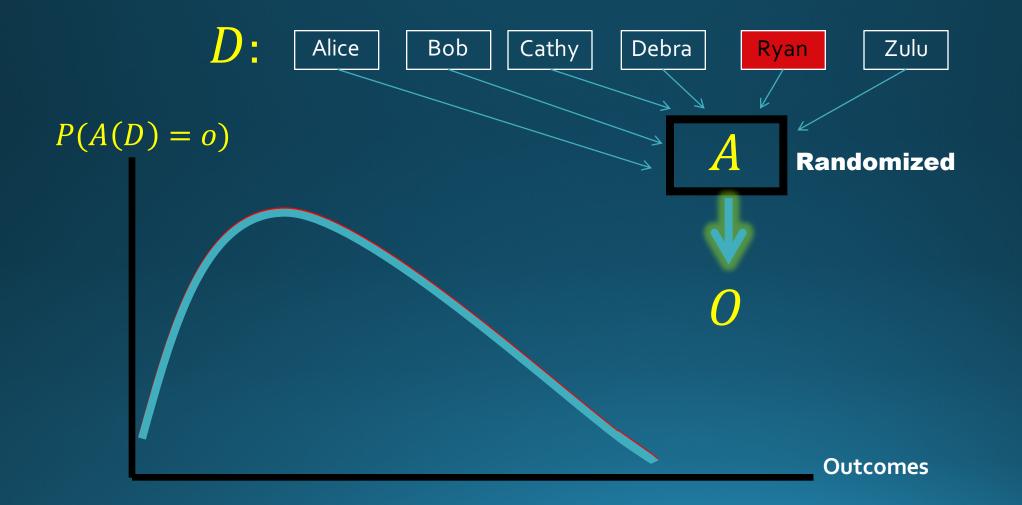
- However, *p*-values are **NOT** low-sensitive enough:
 - Requires $\Delta > \frac{0.37}{\sqrt{n}}$
 - This sensitivity leads to a trivial error guarantee using results from [BNSSSU'16].

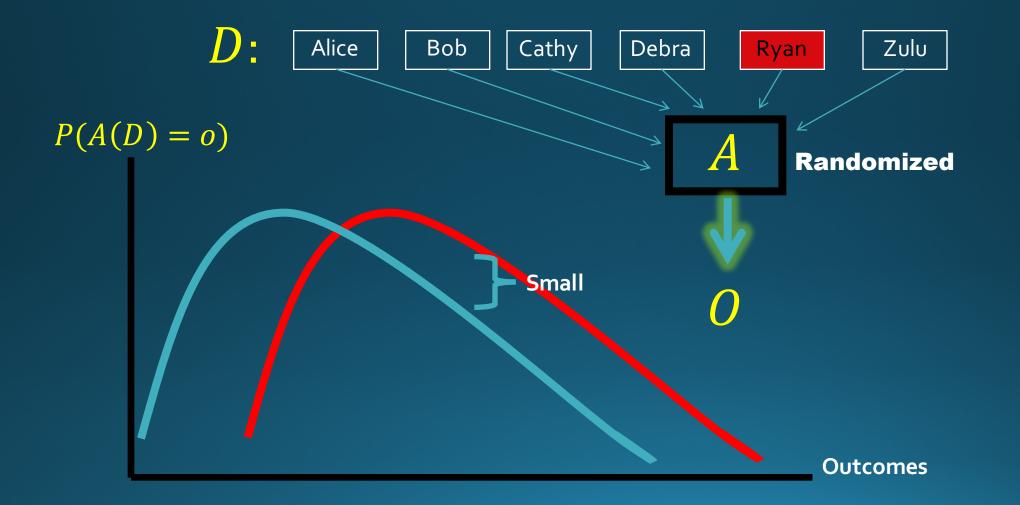
Max-Info Test Selection Procedures

- Question becomes, what test selection procedures $A: D^n \to T$ have bounded max-info?
- Recent work from [DFHPRR15] shows that the following procedures have bounded max-info:
 - (Pure) Differential Privacy algorithmic stability condition.
 - Bounded Description Length bound in terms of |T|.

• Nice composition rules for procedures with bounded max-info: if $I_{\infty}^{\beta_1}(A_1, n) \leq k_1$ and $I_{\infty}^{\beta_2}(A_2, n) \leq k_2$ then $I_{\infty}^{\beta_1+\beta_2}(A_1 \circ A_2, n) \leq k_1 + k_2$







• A randomized algorithm $A: X^n \to Y$ is (ε, δ) -differentially private if for any neighboring data sets $D, D' \in X^n$ and for any outcome $S \subseteq Y$ we have

$P(A(D) \in S) \le e^{\varepsilon} P(A(D') \in S) + \delta$

If $\delta = 0$ we say pure DP, and otherwise approximate DP.

Technical Contributions

- Past result [DFHPRR15]: If $A: D^n \to T$ is $(\epsilon, 0)$ -DP then for $\beta > 0$, $I_{\infty}(A, n) \le O(\epsilon n)$ and $I_{\infty,\Pi}^{\beta}(A, n) \le O\left(\epsilon^2 n + \epsilon \sqrt{n \cdot \log\left(\frac{1}{\beta}\right)}\right)$
- We achieve a bound on max-info with product distributions for the much larger class of (ϵ, δ) -DP algorithms.
- Important because adaptively composing ℓ many (ϵ' , 0)-DP algorithms leads to an overall ($\epsilon'\ell$, 0)-DP algorithm, but also for any $\delta > 0$, we get an $\left(O\left(\epsilon'\sqrt{\ell \log\left(\frac{1}{\delta}\right)}\right), \delta\right)$ -DP algorithm.

Technical Contributions

• **Positive Result**: If $A: D^n \to T$ is (ϵ, δ) -DP then

$$I_{\infty,\Pi}^{\beta}(A,n) = O\left(n\,\epsilon^2 + n\,\sqrt{\epsilon\delta}\right) \quad \text{for} \quad \beta = O\left(n\sqrt{\frac{\delta}{\epsilon}}\right)$$

In the case of low sensitive queries, this bound nearly gives the optimal generalization bound for approx DP algorithms from [BNSSSU16]

Technical Contributions

• **Positive Result**: If $A: D^n \to T$ is (ϵ, δ) -DP then

$$I_{\infty,\Pi}^{\beta}(A,n) = O\left(n\,\epsilon^{2} + n\,\sqrt{\epsilon\delta}\right) \quad \text{for} \quad \beta = O\left(n\sqrt{\frac{\delta}{\epsilon}}\right)$$

• Lower bound for non-product distributions: There is an (ϵ, δ) -DP mechanism A such that for any $\beta \leq \frac{1}{4} - \delta$ we have $I_{\infty}^{\beta}(A, n) = n - O\left(\log\left(\frac{1}{\delta}\right)\frac{\log(n)}{\epsilon}\right)$

Consequences of Results

- Max-Info also satisfies strong composition guarantees.
- Pure DP and bounded description length algorithms can be composed in arbitrary ord
- Not the case distributi
- Even if dat the data at. distribution.

In fact, our lower bound shows that if we do BDL + approx DP, then we can reconstruct the dataset drawn from a product distribution

neralization.

a product

oution on from a product

Ordering matters: important to do DP computations first!

Thanks!

