Max-Information, Differential Privacy, and Post-Selection Hypothesis Testing

Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar

Non-Adaptive Data Analysis

Non-Adaptive Data Analysis

Application: Hypothesis Testing

- Hypothesis test is defined by a test statistic $t: D^{n} \rightarrow \mathbb{R}$ and a null hypothesis $H_{0} \subseteq \Delta(D)$.
- The p-value associated with a value a and a distribution $P \in H_{0}$ is given as $p(a)=\operatorname{Pr}_{x \sim p n}[t(x)>a]$
- Denotes the probability of observing a value of the test statistic that is at least as extreme as a.

Application: Hypothesis Testing

- The goal is to reject H_{0} if the data is not likely to have been generated from that model.
- Note that $p(t(X)) \sim U[0,1]$ if $X \sim P^{n}$ where $P \in H_{0}$.
- If we reject the model when then False Discovery $<\alpha$.

Non-Adaptive Data Analysis

Non-Adaptive Data Analysis

Test t

Non-Adaptive Data Analysis

False Discovery

- Rejecting a true null hypothesis should occur in at most an α fraction of the tests.

Adaptive Data Analysis

$$
t^{\prime} \leftarrow A(X)
$$

$$
X \sim P^{n}
$$

Problem: $p\left(t^{\prime}(X)\right)$ is

Valid p-Value Correction

- Even when we use the data to determine a test, we still want to be able to control the false discovery rate.
- A function $\gamma:[0,1] \rightarrow[0,1]$ is a valid p-value correction function for a selection procedure $A: D^{n} \rightarrow T$ if for every α the procedure:

1. Select test $t \leftarrow A(X)$
2. Reject H_{0} if $p(t(X))<\gamma(\alpha)$
has probability at most α of false discovery.

- We will assume that the selection procedure A satisfies some property

Max-Information [DFHPRR15]

- An algorithm $A: D^{n} \rightarrow T$ with bounded max-info allows the analyst to treat $A(X)$ as if it is independent of data X up to a correction factor determined be the max-info bound.
- The β-approximate max-info between two random variables Y and Z is

$$
I_{\infty}^{\beta}(Y ; Z)=\log \left(\sup _{O: \operatorname{Pr}[(Y, Z) \in O]>\beta} \frac{\operatorname{Pr}[(Y, Z) \in O]-\beta}{\operatorname{Pr}[Y \otimes Z \in O]}\right)
$$

- If $\underset{(y, z) \sim(Y, Z)}{\operatorname{Pr}}\left[\frac{\operatorname{Pr}[(Y, Z)=(y, z)]}{\operatorname{Pr}[Y=y] \operatorname{Pr}[Z=z]} \geq 2^{k}\right] \leq \beta \quad$ then $I_{\infty}^{\beta}(Y ; Z) \leq k$.

Max-Information [DFHPRR15]

- We say that an algorithm A has β-approximate max-info at most k, denoted as $I_{\infty}^{\beta}(A, n) \leq k$ if for every distribution S over datasets D^{n} we have $I_{\infty}^{\beta}(X ; A(X)) \leq k$ where $X \sim S$.
- It will be important to distinguish max-info over product distributions, denoted $I_{\infty, \Pi}^{\beta}(A, n)$, which is the same as above except S can only be a product distribution, i.e. $S=P^{n}$ for some P over D.

Max-Info gives Valid p-Value Corrections

- If we have selection procedure A such that $I_{\infty, \Pi}^{0}(A, n) \leq k$ then a valid p value correction function is

$$
\gamma(\alpha)=\frac{\alpha}{2^{k}}
$$

- Proof: Let $O \subseteq D^{n} \times T$ be the event that A selects a test statistic where the p-value is at most $\gamma(\alpha)$, but the null is true.

$$
\begin{gathered}
\operatorname{Pr}[p(t(X)) \leq \gamma(\alpha) \cap t=A(X)] \\
=\operatorname{Pr}[(X, A(X)) \in O] \\
\leq 2^{k} \operatorname{Pr}\left[X \otimes A\left(X^{\prime}\right) \in O\right] \\
\leq \gamma(\alpha)
\end{gathered}
$$

Max-Info gives Valid p-Value Corrections

- If we have selection procedure A such that $I_{\infty, \Pi}(A, n) \leq k$ then a valid p-value correction function is

$$
\gamma(\alpha)=\frac{\alpha-\beta}{2^{k}}
$$

- Proof: Let $O \subseteq D^{n} \times T$ be the event that A selects a test statistic where the p-value is at most $\gamma(\alpha)$, but the null is true.

$$
\begin{gathered}
\operatorname{Pr}[p(t(X)) \leq \gamma(\alpha) \cap t=A(X)] \\
=\operatorname{Pr}[(X, A(X)) \in O] \\
\leq 2^{k} \operatorname{Pr}\left[X \otimes A\left(X^{\prime}\right) \in O\right] \\
\leq \gamma(\alpha)
\end{gathered}
$$

Mutual Info gives Valid p-Value Corrections

- For test selection $A: D^{n} \rightarrow T$ with mutual info $I(X ; A(X)) \leq m$ for any P where $X \sim P^{n}$, we can also obtain a valid p-value correction with the result from [RZ16], which leads to

$$
\gamma(\alpha)=\min \left\{\frac{2^{\frac{-\log (e) m}{\alpha^{2}}}}{2}, \frac{\alpha}{2}\right\}
$$

- However, a bound on mutual information of m giv for any $k>0$,

$$
I_{\infty, \Pi}^{\beta(k)}(A, n) \leq k \text { where } \beta(k) \leq \frac{\eta}{} \quad \text { when } m \geq 0.05
$$

- Thus, when we have a bound on the mutual informatio. following valid p-value correction

$$
\gamma(\alpha)=\frac{\alpha 2^{\frac{-2}{\alpha}(m+.54)}}{2}
$$

Stability with Low-Sensitivity Queries

- From [BNSSSU'16] we know that other notions of stability lead to ways to estimate the values of adaptively chosen queries on the data:
- Bound $\left|q(X)-q\left(X^{\prime}\right)\right|$ where $q \leftarrow A(X)$ w.h.p. over $X \sim P^{n}$ and A.
- A query $q: D^{n} \rightarrow \mathbb{R}$ is low sensitive if for any two datasets x, x^{\prime} that differ in one entry we have

$$
\left|q(x)-q\left(x^{\prime}\right)\right| \leq \Delta
$$

- However, p-values are low-sensitive enough:
- Requires $\Delta>\frac{0.37}{\sqrt{n}}$
- This sensitivity leads to a trivial error guarantee using results from [BNSSSU'16].

Max-Info Test Selection Procedures

- Question becomes, what test selection procedures $A: D^{n} \rightarrow T$ have bounded max-info?
- Recent work from [DFHPRR15] shows that the following procedures have bounded max-info:
- (Pure) Differential Privacy - algorithmic stability condition.
- Bounded Description Length - bound in terms of $|T|$.
- Nice composition rules for procedures with bounded max-info: if $I_{\infty}^{\beta_{1}}\left(A_{1}, n\right) \leq k_{1}$ and $I_{\infty}^{\beta_{2}}\left(A_{2}, n\right) \leq k_{2}$ then

$$
I_{\infty}^{\beta_{1}+\beta_{2}}\left(A_{1} \circ A_{2}, n\right) \leq k_{1}+k_{2}
$$

Differential Privacy [DMNS ’o6]

Differential Privacy [DMNS ’o6]

Differential Privacy [DMNS ’o6]

Differential Privacy [DMNS 'o6]

- A randomized algorithm $A: X^{n} \rightarrow Y$ is (ε, δ)-differentially private if for any neighboring data sets $D, D^{\prime} \in X^{n}$ and for any outcome $S \subseteq$ Y we have

$$
P(A(D) \in S) \leq e^{\varepsilon} P\left(A\left(D^{\prime}\right) \in S\right)+\delta
$$

If $\delta=0$ we say pure DP, and otherwise approximate DP.

Technical Contributions

- Past result [DFHPRR15] : If $A: D^{n} \rightarrow T$ is $(\epsilon, 0)$-DP then for $\beta>0$,

$$
I_{\infty}(A, n) \leq O(\epsilon n) \text { and } I_{\infty, \Pi}^{\beta}(A, n) \leq O\left(\epsilon^{2} n+\epsilon \sqrt{n \cdot \log \left(\frac{1}{\beta}\right)}\right)
$$

- We achieve a bound on max-info with product distributions for the much larger class of (ϵ, δ)-DP algorithms.
- Important because adaptively composing ℓ many ($\epsilon^{\prime}, 0$)-DP algorithms leads to an overall ($\epsilon^{\prime} \ell, 0$)-DP algorithm, but also for any $\delta>0$, we get an $\left(O\left(\epsilon^{\prime} \sqrt{\ell \log \left(\frac{1}{\delta}\right)}\right), \delta\right)$-DP algorithm.

Technical Contributions

- Positive Result: If $A: D^{n} \rightarrow T$ is (ϵ, δ)-DP then

$$
I_{\infty, \Pi}^{\beta}(A, n)=O\left(n \epsilon^{2}+n \sqrt{\epsilon \delta}\right) \quad \text { for } \quad \beta=O\left(n \sqrt{\frac{\delta}{\epsilon}}\right)
$$

In the case of low sensitive queries, this bound nearly gives the optimal generalization bound for approx DP algorithms from [BNSSSU16]

Technical Contributions

- Positive Result: If $A: D^{n} \rightarrow T$ is (ϵ, δ)-DP then

$$
I_{\infty, \Pi}^{\beta}(A, n)=O\left(n \epsilon^{2}+n \sqrt{\epsilon \delta}\right) \quad \text { for } \quad \beta=O\left(n \sqrt{\frac{\delta}{\epsilon}}\right)
$$

- Lower bound for non-product distributions:There is an (ϵ, δ)-DP mechanism A such that for any $\beta \leq \frac{1}{4}-\delta$ we have

$$
I_{\infty}^{\beta}(A, n)=n-O\left(\log \left(\frac{1}{\delta}\right) \frac{\log (n)}{\epsilon}\right)
$$

Consequences of Results

- Max-Info also satisfies strong composition guarantees.
- Pure DP and bounded description lenqth algorithms can be composed in arbitran, ord In fact, our lower bound shows
- Not the case that if we do BDL + approx DP, distributi
- Even if dat the data atu. distribution eralization. then we can reconstruct the dataset drawn from a product a product distribution.
- Ordering matters: important to do DP computations first!

Thanks!

