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• A routing game G is defined by

• A set of n players
• A graph with vertices V and edges E where |E | = m and each

edge has a latency function `e : R+ → [0, 1].
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Players may not know each other’s
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• Sources and destinations may
be sensitive information,
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First Goal - Equilibrium Selection

Definition

An action profile a = (a1, . . . , an) is an η-Nash equilibrium if for
every player i of type ti ∈ T and every deviation a′i we have

c(ti , a) ≤ c(ti , (a′i , a−i )) + η

Finding a NE requires knowing the types of every player

• Goal 1: Coordinate players to play an approximate Nash
equilibrium as if we knew the types, even in settings of
incomplete information.
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Second Goal - Social Welfare

Definition

An action profile a is an η-Socially Optimal Routing if

C (a) ≤ min
a′∈An

C (a′) + η

where C (a) =
∑

e∈E ye`e(ye)

Finding the social optimal requires knowing the players’ types.

• Goal 2: Coordinate selfish players to play an approximate
social optimal routing as if we knew the types, in settings of
incomplete information.
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Goal One: Equilibrium Selection

• Create a mechanism (or a mediator) that takes reported
source destinations as input and then suggests an action
(route) for each player to take.

• Mediator for a Routing Game:
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• A mediator is an algorithm M : (T ∪ ⊥)n → (A ∪ ⊥)n.

• The game has changed - Mediated Game GM .

• Players’ actions include how they will interact with M.
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deviating from:

• Using the Mediator M.

• Reporting their true type to M.

• Following the suggested actions of M.
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Solution Attempt 1

• Naive Solution: Have M output an approximate NE for the
game induced by the reported types.

• If all players report truthfully, then there is little incentive to
not follow M’s suggestion.

• If one person changes her type, the game has changed and
the NE may be very different - costs to players may be very
different between different NE.

• How do we control the impact any one player has on the
outcome of M?
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datasets t and t′ and all outcome sets B ⊆ O we have

P(M(t) ∈ B) ≤ eεP(M(t′) ∈ B)
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Relaxation of DP - Joint DP [KPRU’14]

Definition

A randomized algorithm M : T n → An is ε-JDP if for every player
i , t−i ∈ T n−1, ti , t

′
i ∈ T , and all outcome sets B ⊆ An−1,

P[ M(ti , t−i )−i︸ ︷︷ ︸
everyone except i

∈ B] ≤ eεP[ M(t ′i , t−i )−i︸ ︷︷ ︸
everyone except i

∈ B]

where M(t)−i = (M1(t), · · · ,Mi−1(t),Mi+1(t), · · · ,Mn(t))

Allows outcome for player i to depend on i ’s report ti .
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JDP Mediators

Key Property: A JDP mediator that also computes an equilibrium
of the underlying game is approximately truthful.

Theorem
Let G be any game with costs in [0,m], and let M be a mediator
such that

• It is ε-JDP

• For any set of reported types t, it outputs an η-approximate
pure strategy Nash Equilibrium.

Then good behavior is an η′-approximate ex-post Nash Equilibrium
for the incomplete information game GM where

η′ = 2mε+ η
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Main Result for Equilibrium Selection

• There exists such a mediator from the previous theorem for
large congestion games.

• Further, we show that good behavior is an η′-approximate
ex-post equilibrium for the incomplete information game GM
where

η′ = Õ

((
m5

n

)1/4
)

Resulting play of good behavior is an η′ approximate NE of
the complete information game.
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Large Games

• We assume that each player cannot significantly change the
cost of another player by changing her route.

|`e(ye)− `e(ye + 1)| ≤ 1

n
for ye ∈ [n] and e ∈ E .

• The costs then satisfy for j 6= i and aj 6= a′j ∈ A

|c(ti , (aj , a−j))− c(ti , (a′j , a−j))| ≤ m

n
.



How to Construct Such a Mechanism?

• Simulate Best Response Dynamics =⇒ obtains a NE in
routing games [MS’96].

• Compute Best Responses privately =⇒ costs only depend on
the number of people on each edge.

• Limit the number of times a single player can change routes
=⇒ uses the “largeness” assumption.
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Billboard Lemma

!

• If a mechanism M : T n → O is (ε, δ)-DP and consider any
function φ : T × O → A. Define M ′ : T n → An to be

M ′(t)i = φ(ti ,M(t)).

Then M ′ is (ε, δ)- JDP.



Goal Two - Social Welfare

Recall that we want to minimize the cost to all players:

Definition

An action profile a is an η-Socially Optimal Routing if

C (a) ≤ min
a′∈An

C (a′) + η

where C (a) =
∑

e∈E ye`e(ye)

How to get selfish agents to play the socially optimal routing
without knowing their types?
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Classical Approach - Tolls

Add constant tolls τ = (τe)e∈E to the edges such
that a NE of the game with tolls (tolled game)
is the socially optimal in the game without tolls.
However these tolls depend on players’ types.

!

x+4!

x+4!

10!

10!

!0!10! 10!



Classical Approach - Tolls

Add constant tolls τ = (τe)e∈E to the edges such
that a NE of the game with tolls (tolled game)
is the socially optimal in the game without tolls.
However these tolls depend on players’ types.

!

x+4!

x+4!

10!

10!

!0!10! 10!



Modified Mediator for Social Welfare

• Mediator still suggests routes to each player a = (a1, · · · , an)
that they may or may not follow, but it also outputs tolls
τ = (τe)e∈E on each edge, that every player must pay.

• Modified Mediator:
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JDP Mediators + Tolls

Recall: JDP + NE =⇒ truthfulness

Theorem
Let Mi : (T ∪ ⊥)→ A× [0,U]m where Mi (t) = (MA

i (t),Mτ (t))
outputs a suggested route and tolls for each edge. If
M = (M1, · · · ,Mn) satisfies both

• ε-JDP and

• for any input types t, the action profile a = MA(t) is an
η-approximate NE in the modified routing game with

`Me (y) = `e(y) + Mτ
e (t)

then good behavior is an η′ approximate ex-post NE in the
mediated tolled game, where

η′ = η + 2m(U + 1)ε
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Main Result for Social Welfare

• There exists a mediator M from the previous theorem for large
routing games with convex latencies.

• Further, with this mediator M, good behavior forms an η′

approximate ex-post NE in the mediated tolled game, where

η′ = Õ

(
m3/2

n1/5

)
.

• Resulting play of good behavior is an Õ(mn4/5) socially
optimal routing.

• As long as the optimal solution grows ω(n4/5), then we get a
(1 + o(1)) multiplicative approximation to the true optimal.
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How to Construct such a Mediator?

• Compute an approximately optimal flow a• subject to JDP via
a privacy preserving projected gradient descent algorithm.

• Given target flow a•, we find the necessary tolls τ̂ so that
most players are nearly best responding in this tolled game
when playing a•.
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How to Construct such a Mediator

• Allow the few players that are not approximately best
responding to then best respond in the tolled game. This will
modify a• only slightly (by largeness assumption) and so will
remain nearly optimal in the original game.

• Resulting flow â is then nearly optimal in the original game
and an approximate NE in the tolled game with tolls τ̂ .
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QUESTIONS?


