Differentially Private Chi-Squared Hypothesis Testing

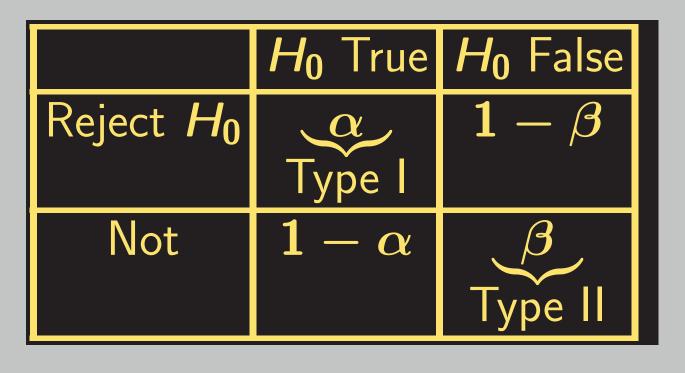
Privacy Tools for Sharing Research Data A National Science Foundation

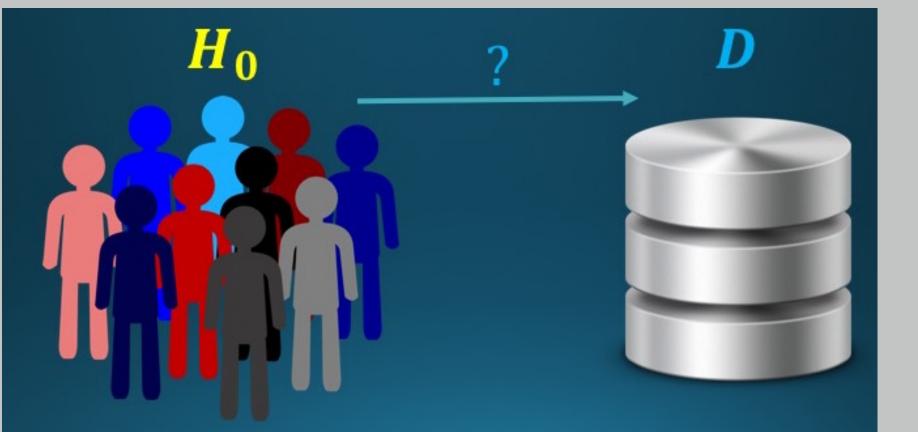
Secure and Trustworthy Cyberspace

Marco Gaboardi, Hyun woo Lim, Ryan Rogers, and Salil Vadhan

Hypothesis Testing

- Given dataset *D* and proposed model of the data H_0 , we want to determine whether H_0 should be rejected or not.
- **Goal**: Design a test that leads to small Type I and Type II error.





Our Contribution for DP Hypothesis Tests

 \blacktriangleright Add noise to cell counts to get Q_{DP}^2 , incorporate the distribution from the additional noise when computing a new critical value.

Project

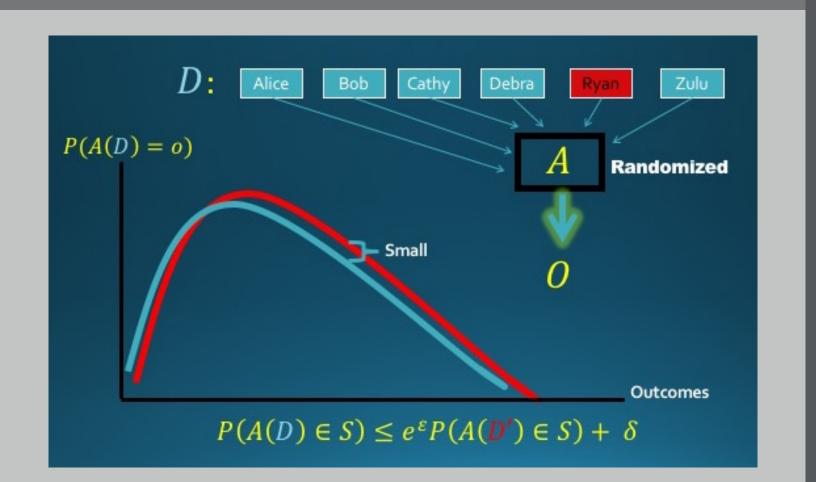
- ► New GOF and independence tests:
 - MC based tests which can use either Laplace or Gaussian noise. GOF test provably achieves at most target Type I error.
 - Tests based on new asymptotic distribution (AsympGOF and AsympIND)- only for Gaussian noise.
 - $Q_{DP}^2 \xrightarrow{D} \sum \lambda_i \chi_1^2$ Use this to compute new critical values.

The Need for Privacy

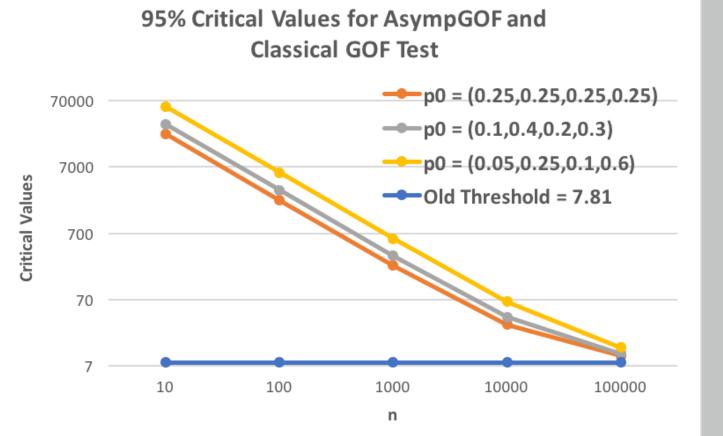
- Data may contain sensitive information, e.g. medical data
- Releasing the result may leak information
- Homer et al. '08 showed that with only aggregate statistics on genomic-wide association studies can determine whether

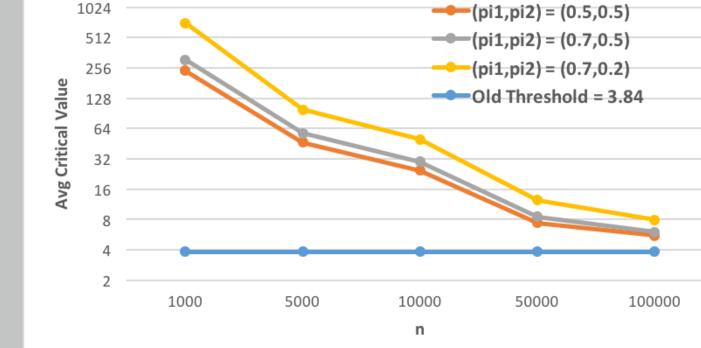
someone in the study has a disease or not. New Goal: Obtain statistically valid hypothesis tests which preserve the privacy of those in the study.

Differential Privacy



Modified Critical Values for $\alpha = 0.05, \epsilon = 0.1$





Type I Error for Private GOF Tests: $\alpha = 0.05, \epsilon = 0.1$

should *roughly* stay the same if one person changes his data.

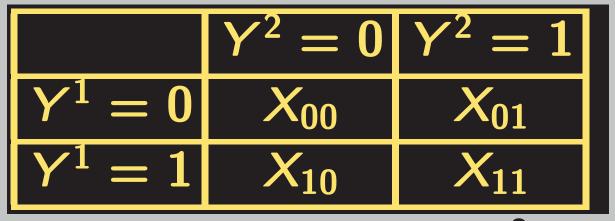
Outcome of test $A: \mathcal{D} \to \mathcal{O}$

Focus of this work: Chi-Square Tests

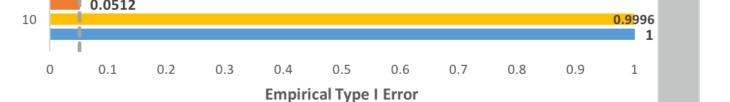
► Categorical data $X \sim$ Multinomial(n, p) where $p = (p_1, \dots, p_d)$ ► Tests using the chi-square statistic:

 $Q^{2} = \sum_{i} \frac{(\text{Observed}_{i} - \text{Expected}_{i})^{2}}{\text{Expected}_{i}}.$

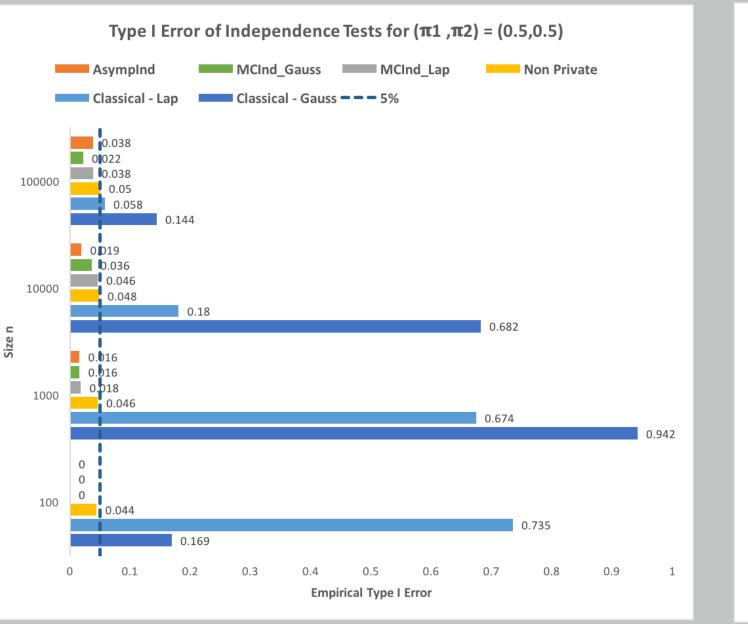
- **Goodness of Fit**: $H_0 : p = p^0$.
- ▶ Independence Testing: $Y^1 \sim \text{Multinomial}(1, \pi^1)$ and $Y^2 \sim \text{Multinomial}(1, \pi^2)$ are independent. Form the contingency table of counts based on *n* trials:

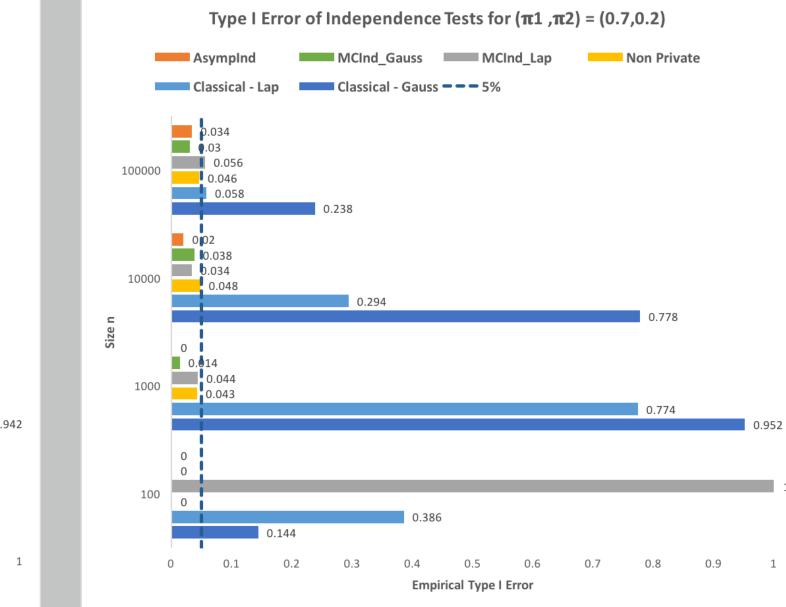


 \blacktriangleright Tests based on a *critical value* τ , so that if $Q^2 > \tau$ then Reject H_0 .



Type I Error for Private Independence Tests: $\alpha = 0.05, \epsilon = 0.1$





Type II Error: Data not generated from H_0

For GOF we sample X with $p^0 + (0.01) \cdot (1, -1, 1, -1)$ For independence we add covariance **0.01** between Y^1 and Y^2 .

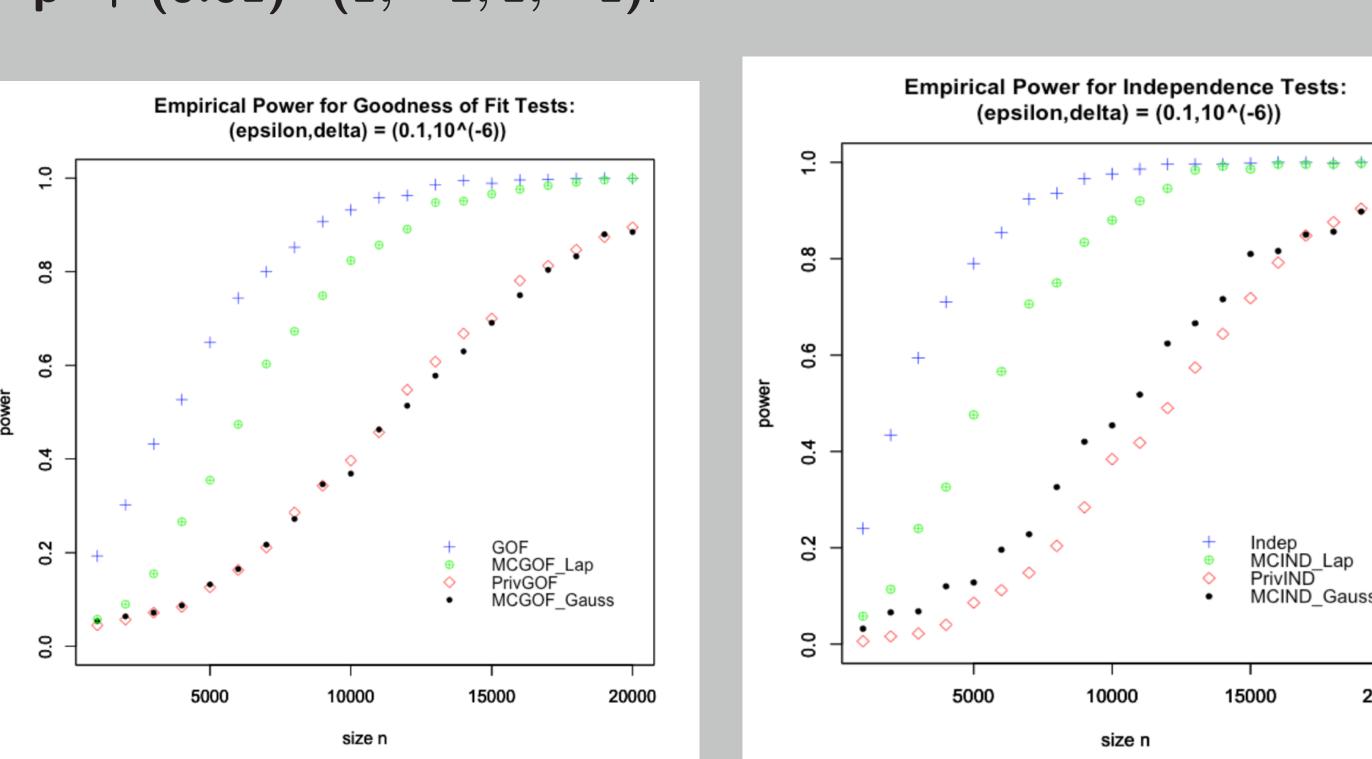
 \blacktriangleright Known that $Q^2 \stackrel{D}{ o} \chi^2_{df}$, so we set $au = \chi^2_{df,1-lpha}$ in order for Type I error to be nearly α . Works well even for moderately sized datasets.

Prior Work for DP Hypothesis Tests

Add independent noise Z to each cell count and use the classical test with $Q_{DP}^2 = Q^2(X + Z)$. Scale of noise is small, but how does it perform?

Set
$$\alpha = 5\%$$
, $\epsilon = 0.1$.

$ec{p}^0$	n	$\chi^2_{df,1-\alpha}$	Type I error
(.25,.25,.25,.25)	100	7.81	100%
(.25,.25,.25,.25)	1,000	7.81	99%
(.25,.25,.25,.25)	10,000	7.81	65%
(.25,.25,.25,.25)	100,000	7.81	10%
(.1,.2,.3,.4)	10,000	7.81	70%
(.1,.2,.3,.4)	100,000	7.81	12%



Ryan Rogers

University of Pennsylvania

20000