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Goal

I Lower bounds for estimation under local differential privacy constraints.
I Allow arbitrary interaction and all privacy parameters ε ∈ [0,∞].

Local Privacy Definitions

I A random variable Z is (ε, δ)-DP for X ∈ X if conditional on X = x , Z has
distribution Q(· | x) and for any measurable set S and x, x ′, we have

Q(S | x) ≤ eεQ(S | x ′) + δ.

I Z is (ε, α)- Renýı DP if for all x and x ′ we have

Dα(Q(· | x)‖Q(· | x ′)) ≤ ε

Fully Interactive Privacy Schemes

I Let ZZZ = {Z (t)
i } be the full communication transcript

I Let the samples x[1:n] and x (i)
[1:n] ∈ X

n differ in only example i , otherwise being
arbitrary. The output ZZZ is ε-KL-locally private on average if

1

n

n∑
i=1

Dkl

(
Q(ZZZ ∈ · | x[1:n])‖Q(ZZZ ∈ · | x (i)

[1:n])
)
≤ εkl.

I Assumption 1: The entire transcript ZZZ is εkl-KL-locally private on average.
I Assumption 2: The entire transcript ZZZ is (ε, δ)-DP for small enough δ.
I Note: ε differential privacy implies εkl ≤ min{ε, ε2}

Minimax Risk

I Let P be a collection of distributions on X and θ(P) ∈ Θ ⊂ Rd be a parameter of
interest for P ∈ P .

I Given a sample X1, · · · ,Xn ∼ P and any interactive private channel Q, we get the
set of privatize observations

ZZZ = {Z (1)
1 ,Z (1)

2 , · · · ,Z (1)
n ,Z (2)

1 , · · · ,Z (2)
n , · · · ,Z (T )

n }.
I L(θ̂, θ(P)) is the loss for estimator θ̂ based on the privatized observations and the

true parameter θ(P).
I The channel minimax risk for family P , parameter θ, and loss L is

Mn(θ(P), L,Q) = inf
θ̂

sup
P∈P

EP,Q

[
L
(
θ̂(ZZZ), θ(P)

)]
.

Main Results

Take Home: Effective sample size reduction from n to n ·min{ε, ε2, d}/d
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I Bernoulli Estimation: Let Pd be the collection of Bernoulli distributions on
{0, 1}d and L(θ, θ′) =

∑d
j=1 `(θj − θ′j) for ` symmetric then

Mn(θ(Pd), L,Q) & d · `

√ d
nεkl


I Logistic Risk: Let Pd be the collection of logistic distributions with
`(θ; x, y) = log

(
1 + e−y〈x,θ〉), RP(θ) = EP[`(θ; (X ,Y )], and excess risk

L(θ, θ(P)) = RP(θ)− RP(θ(P)).

Then

Mn(θ(Pd), L,Q) &
d
n
·
d
εkl

I Gaussian Estimation (only for Assumption 1): Let Pd be the collection of
Gaussians N(θ, σ2Id) and θ ∈ [−1, 1]d and σ > 0 is known, then

Mn(θ(Pd), ‖ · ‖2
2,Q) & d ·min

{
1,max

{
d
εkl

·
σ2

n
,
σ2

n

}}
I k-sparse Gaussian Estimation (only for Assumption 1): Let Pd be the collection

of k-sparse Gaussians N(θ, σ2Id) and θ ∈ [−1, 1]d and σ > 0 is known, then

Mn(θ(Pd), ‖ · ‖2
2,Q) & k ·min

{
1,max

{
d
εkl

·
σ2

n
,
σ2 log(d/k)

n

}}

Achievability and Analysis

I The lower bounds are achievable. See results in [? ]
I Minimax lower bounds build off work in communication limits in

estimation [ZDJW13, GMN14, BGM+16].
I Bounds follow from mutual information calculations and communication structure

Extensions

I Also consider Compositional locally private schemes [JMNR19], where each
randomizer is locally private while ensuring the sum of privacy parameters is bounded.

I Results apply when d -dimensional parameters that are “independent” of each other;
when correlations exist between coordinates the lower bounds do not apply.

I Interesting question: can leveraging correlation improve locally private estimation?
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