A New Class of Private Chi-Square Tests

Hypothesis Testing

	H ₀ True	H ₀ False
Reject H_0	False Discovery	Power
Not	Significance	Type II Error

- \triangleright Given dataset D and proposed model of H_0 , should H_0 should be rejected or not based on data.
- **Goal**: Bound \mathbb{P} [False Discovery] $\leq \alpha$, while obtaining good power.

Two New Test Statistics for DP Hypothesis Tests

► The *unprojected* statistic:

$$Q_{DP}^{2} = n \left(\tilde{X}/n - \boldsymbol{p}^{0} \right)^{\mathsf{T}} \boldsymbol{\Sigma}_{DP}^{-1} \left(\tilde{X}/n - \boldsymbol{p}^{0} \right)$$

Theorem: Under the null hypothesis and $\sigma^2/n \rightarrow \text{constant} > 0$,

$$Q^2_{DP} \stackrel{D}{
ightarrow} \chi^2_d.$$

► The projected statistic with projection $\Pi = I_d - \frac{1}{d}\mathbf{1}\mathbf{1}^{\mathsf{T}}$: $\mathcal{Q}_{DP}^{2} = n \left(\tilde{X} / n - \boldsymbol{p}^{0} \right)^{\mathsf{T}} \boldsymbol{\Pi} \boldsymbol{\Sigma}_{DP}^{-1} \boldsymbol{\Pi} \left(\tilde{X} / n - \boldsymbol{p}^{0} \right)$

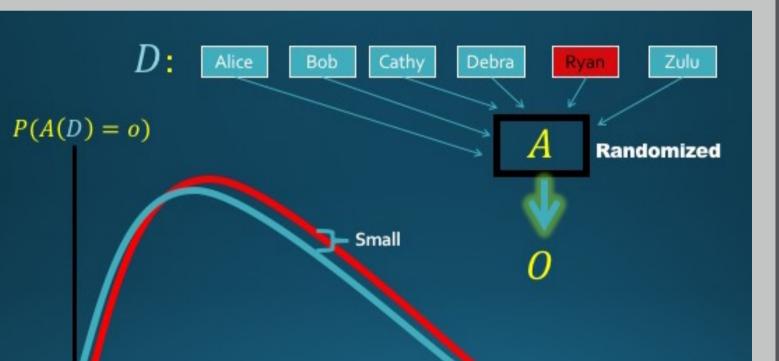
The Need for Privacy

- Data may contain sensitive information.
- Releasing the result may leak information
- ► Homer et al. '08 showed that with only aggregate statistics on genomic-wide association studies we can determine whether someone in the study has a disease or not.

Modified Goal: Obtain statistically valid hypothesis tests which preserve the privacy of those in the study.

(Concentrated) Differential Privacy [DMNS], [BS]

- Outcome of test $A : \mathcal{D} \to \mathcal{O}$ should roughly stay the same if one person changes his data.
- DP [DMNS]: For any neighboring D, D' and outcome set $S \subseteq \mathcal{O}$: $\mathbb{P}[A(D) \in S]$ $\leq e^{\epsilon} \mathbb{P}[A(D') \in S] + \delta.$



Theorem: Under the null hypothesis and $\sigma^2 = O(n)$,

 $\mathcal{Q}^2_{DP} \xrightarrow{D} \chi^2_{d-1}$.

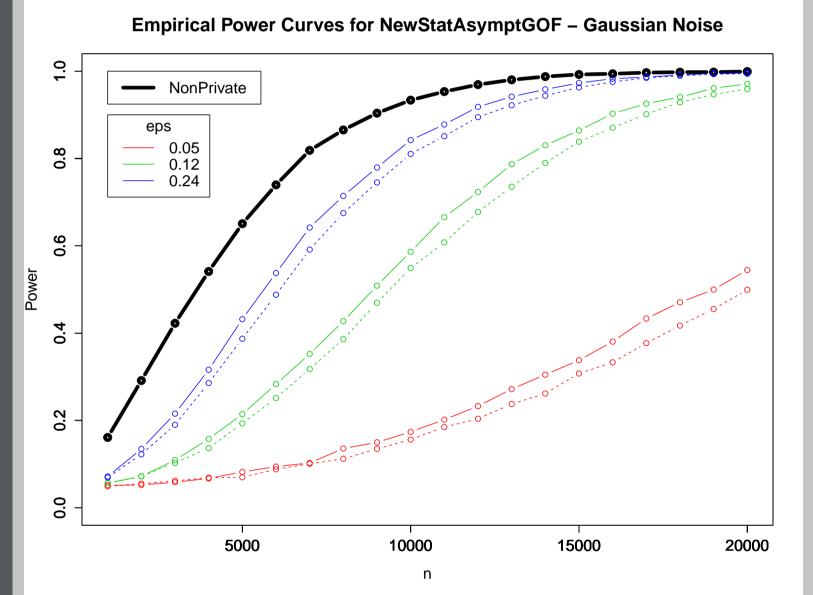
Difference of two statistics is a scaled *independent* chi-square

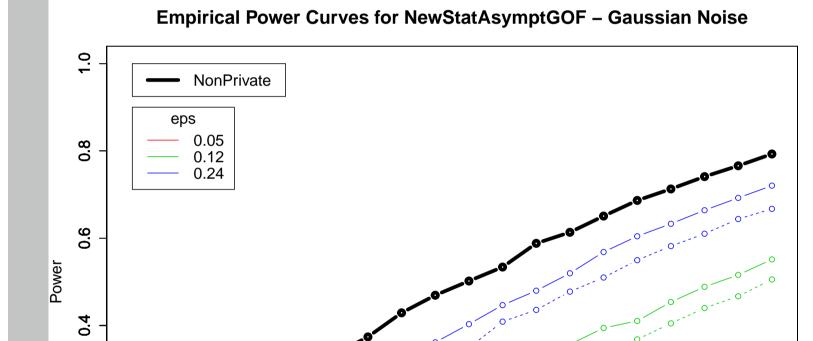
 $Q_{DP}^2 - Q_{DP}^2 = d \sigma^2 \chi_1^2$

Statistics can be extended to more general chi-square tests and we can use other types of noise distributions via an MC approach.

Power Results – also works with Laplace noise

 \blacktriangleright Test is designed to achieve \mathbb{P} [False Discovery] close to α , as in classical test. \triangleright Experimentally check the power of our test in 10,000 trials, fixing $\delta = 10^{-6}$ (projected stat is solid and unprojected is dashed)





zCDP [BS]: Another measure of privacy "between" $(\epsilon, 0)$ -DP and $(\epsilon, \delta > 0)$ -DP.

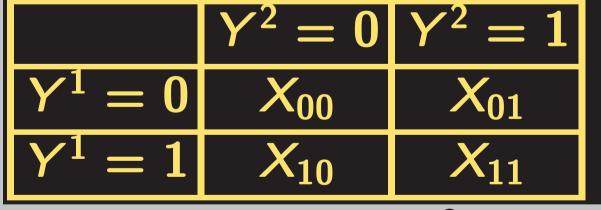
Outcomes $P(A(D) \in S) \le e^{\varepsilon} P(A(D') \in S) + \delta$

Focus of this work: Chi-Square Tests

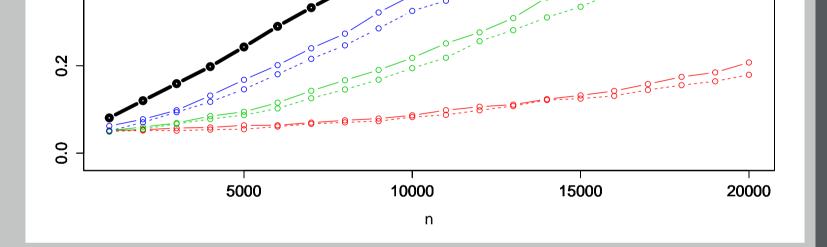
 \triangleright Categorical data histogram: $X \sim$ Multinomial $(n, p = (p_1, \dots, p_d))$ ► General class of tests use the chi-square statistic:

$$Q^{2} = \sum_{i} \frac{(\text{Observed}_{i} - \text{Expected}_{i})^{2}}{\text{Expected}_{i}}.$$

- **Goodness of Fit**: $H_0 : p = p^0$.
- ▶ Independence Testing: $H_0: Y^1 \sim \text{Multinomial}(1, \pi^1)$ and $Y^2 \sim Multinomial(1, \pi^2)$ are independent. Form the contingency table of counts based on *n* trials:



Tests based on a *critical value* τ , so that if $Q^2 > \tau$ then reject H_0 . \blacktriangleright Known that $Q^2 \stackrel{D}{ o} \chi^2_{df}$, so we set $au = \chi^2_{df,1-lpha}$ in order for Type I error to

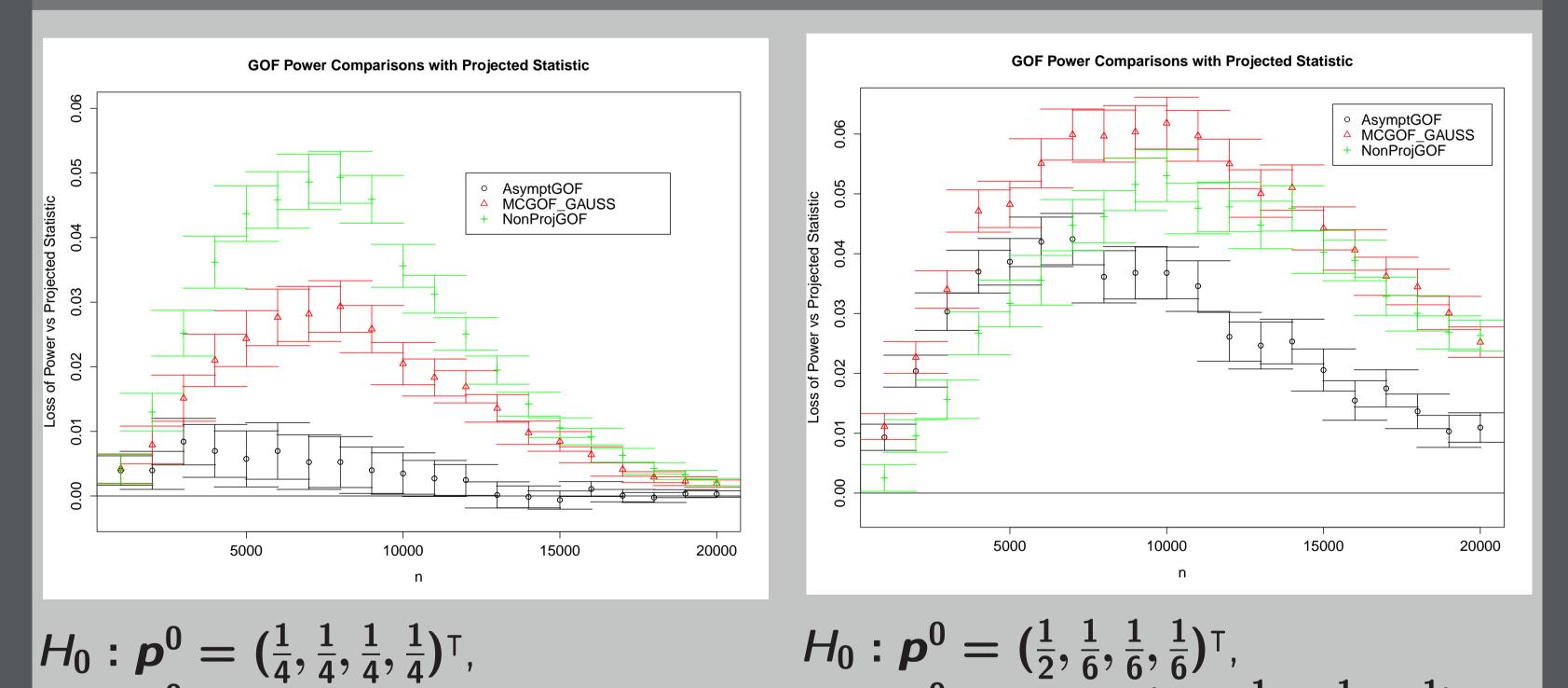


$$\mathcal{A}_0: \boldsymbol{p}^0 = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})^{\mathsf{T}},$$

 $\mathcal{A}_1: \boldsymbol{p}^0 + 0.01 \cdot (1, -1, -1, 1)^{\mathsf{T}}$

$$H_0: \boldsymbol{p}^0 = (\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})^{\mathsf{T}}, \\ H_1: \boldsymbol{p}^0 + 0.01 \cdot (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})^{\mathsf{T}}$$

Power Comparison with [GLRV]: $\alpha = 0.05$, $(\epsilon, \delta) = (0.24, 10^{-6})$



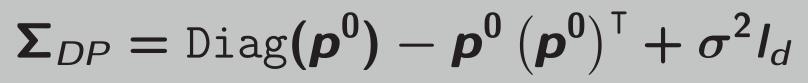
be nearly α . Works well even for moderately sized datasets.

Prior Work for DP Hypothesis Tests

- \blacktriangleright [USF13, YFSU14] Add noise to statistic to preserve privacy \rightarrow leads to unbounded noise in worst case.
- \blacktriangleright [JS] Add noise to histogram, use classical test \rightarrow leads to \mathbb{P} [False Discovery] > α for small datasets.
- ► [GLRV, WLK15] Add noise to histogram, use classical statistic but modify distribution to take into account the noise.
- This Work: Add noise to histogram, modify statistic to account for the noise so that it is a chi-square random variable as in the classical tests.

Preliminaries

Add $N(0, \sigma^2)$ noise to each cell count of histogram, get noisy version X► Write covariance matrix for multinomial with added noise



 $H_0: \boldsymbol{p}^0 = (\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})^{\mathsf{T}}, \\ H_1: \boldsymbol{p}^0 + \mathbf{0.01} \cdot (\mathbf{1}, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3})^{\mathsf{T}}.$ $H_1: p^0 + 0.01 \cdot (1, -1, -1, 1)^{\mathsf{T}}$

References

[BS] Bun and Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds. In TCC'16, Part I. [DMNS] Dwork, McSherry, Nissim, and Smith. Calibrating noise to sensitivity in private data analysis. In TCC '06. [GLRV] Gaboardi, Lim, Rogers, and Vadhan. Differentially private chi-squared hypothesis testing. In ICML'16. [JS] Johnson and Shmatikov. Privacy-preserving data exploration in genome-wide association studies. In KDD'13. [USF13] Uhler, Slavkovic, and Fienberg. Privacy-preserving data sharing for gwas. J. of Privacy and Confidentiality, 5(1), 2013. [WLK15] Wang, Lee, and Kifer. Differentially private hypothesis testing, revisited. arXiv preprint arXiv:1511.03376, 2015. [YFSU14] Yu, Fienberg, Slavković, and Uhler. Scalable privacy-preserving data sharing methodology for gwas. J. of Biomed Informatics, 50, 2014.