Locally Private Mean Estimation: Z-test and Tight Confidence Intervals

Marco Gaboardi, Ryan Rogers, Or Sheffet

Mean estimation (ME)

- Setting: We have n samples drawn from a Gaussian

$$
X_{1}, \ldots, X_{n} \sim_{\text {i.i.d }} \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

such that $\mu \in[-R, R]$ for some known bound R, and σ is either provided as an input (known variance case) or left unspecified (unknown variance case).

- Goal: Determine an estimate of $\boldsymbol{\mu}$ useful for Z-test and for releasing confidence intervals.

$$
\underset{\mathrm{x}^{\text {i.i.d. } \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \mathcal{M}(\mathrm{X})}}{\mathbb{P}}[\mu \in \mathcal{M}(\mathrm{X})] \geq 1-\beta
$$

The Need for Privacy

- Data may contain sensitive information.
- Releasing the result may leak information

Modified Goal: Determine an estimate of μ which preserves the privacy of those in the study and that is useful for Z-test and for releasing confidence interval.
Local Differential Privacy [4] (LDP)

- Central Model: Data is submitted in the clear to a trusted curator and the output of a statistic on the data is privatized.
- Local Model: No trusted curator - data is privatized and then collected.
- An algorithm $M: \mathcal{X} \rightarrow \mathcal{O}$ is ϵ-differentially private if for all inputs, x, x^{\prime} and outcome sets $S \subseteq \mathcal{O}$
$\mathbb{P}[M(x) \in S] \leq e^{\epsilon} \mathbb{P}\left[M\left(x^{\prime}\right) \in S\right]$.
- Local model of differential privacy is used in practice

LDP randomizers properties

We use the following mechanisms

- Gaussian Noise [2]: Suppose each datum is sampled from an interval I of length ℓ. Then we add independent noise

$$
\mathcal{N}\left(0,2 \ell^{2} \ln (2 / \delta) / \epsilon^{2}\right)
$$

to each datum guaranteeing (ϵ, δ)-differential privacy

- Randomized Response [5]: Suppose each datum is a bit $\{\mathbf{0}, \mathbf{1}\}$ and on each datum we operate independently, applying $\operatorname{RR}_{\epsilon}:\{0,1\} \rightarrow\{0,1\}$ where

$$
\mathbf{R R}_{\epsilon}(b)=\left\{\begin{array}{lr}
b & \text { w.p. } \frac{e^{\epsilon}}{1+e^{\epsilon}} \\
1-b & \text { else }
\end{array}\right.
$$

- Bit Flipping algorithm [1]: Suppose each datum x_{i} is a d-dimensional vector indicating its type using a standard basis vector. The Bit Flipping mechanism now runs d independent randomized response mechanism for each coordinate separately with parameter $\boldsymbol{\epsilon / 2}$:

$$
\operatorname{BF}\left(x_{i}^{1}, \ldots, x_{i}^{d}\right)=\left(\operatorname{RR}_{\epsilon / 2}\left(x_{i}^{1}\right), \ldots, \mathbf{R R}_{\epsilon / 2}\left(x_{i}^{d}\right)\right)
$$

LDP ME - Known Variance

Our approach is inspired by the work of Karwa and Vadhan [3]. We adapt it to the local model.
KnownVar (X; $\sigma, \beta, \epsilon, n, R$) (sketch)
Find a bin of length σ most likely to hold μ
2. Construct an interval of length $4 \sigma+2 \sigma \sqrt{2 \log (8 n / \beta)}$ centered at this bin
3. Project all remaining points onto this interval and add ind. Gaussian noise.

KnownVar properties

- Privacy: KnownVar is (ϵ, δ)-LDP.
- Confidence Interval: If $n \geq 1600\left(\frac{e^{\epsilon / 2}+1}{e^{\epsilon / 2}-1}\right)^{2} \log \left(\frac{8 d}{\beta}\right)$, then KnownVar returns an interval I such that: $\underset{\mathrm{x}, \mathrm{KnownVar}}{\mathbb{P}}[m u \in I] \geq \mathbf{1}-\boldsymbol{\beta}$. whose size is:

$$
|I|=O\left(\sigma \cdot \frac{\sqrt{\log (n / \beta) \cdot \log (1 / \beta) \cdot \log (1 / \delta)}}{\epsilon \sqrt{n}}\right)
$$

Locally Private Z-test

- For any interval on the reals I we can associate a likelihood of $p_{l} \stackrel{\text { def }}{=} \underset{X \sim \mathcal{P}}{\mathbb{P}}[X \in I]$, and we know that w.p. $p_{l} \pm \beta$ it indeed holds that $\mu \in I$.
- This mimics the power of a Z-test - in particular we can now compare two intervals as to which one is more likely to hold μ, compare populations, etc.
- Below are results showing the empirical p-values and power averaged over 100 trials for various privacy parameters.

Lower Bounds

- Main Lemma: Let $\boldsymbol{\mathcal { M }}$ be a one-shot (each individual is presented with a single query) local ϵ-differentially private mechanism. Let \mathcal{P} and \mathcal{Q} be two distributions, with $\boldsymbol{\Delta} \stackrel{\text { def }}{=} d_{\mathrm{TV}}(\mathcal{P}, \mathcal{Q})$. Fix any $0<\delta<\mathrm{e}^{-1}$ and set
$\epsilon^{*}=8 \epsilon \Delta \sqrt{n}\left(\sqrt{\frac{1}{2} \ln (2 / \delta)}+16 \epsilon \Delta \sqrt{n}\right)$. Then, for any set S of outputs,

$$
\operatorname{Pr}_{\substack{\text { ii. }}}^{\sim \mathcal{P} ; \mathcal{M}}\left[\mathcal{M}(X \in S] \leq e^{\epsilon^{*}} \operatorname{Pr}_{\mathrm{x}^{\mathrm{i} i \mathrm{\sim}} \sim \mathcal{Q} ; \mathcal{M}}[\mathcal{M}(\mathrm{X}) \in S]+\delta\right.
$$

Lower bound: Any one-shot local differentially private algorithm must return an interval of length

$$
\Omega\left(\frac{\sigma \sqrt{\log (1 / \beta)}}{\epsilon \sqrt{n}}\right)
$$

- Lower bound: Let \mathcal{M} be a ϵ-LDP mechanism which is ($\alpha_{\text {dist }}, \alpha_{\text {quant }}, \beta$)-useful for the p-quantile problem over \mathcal{P} given that the true p-quantile lies in the interval $[-R, R]$. Then, for any $\beta<\frac{1}{6}$ it must hold that $n \geq \Omega\left(\frac{1}{\alpha_{\text {quant }}^{2} \epsilon^{2}} \cdot \ln \left(\frac{R}{\alpha_{\text {dist }} \beta}\right)\right)$.

LDP ME - Unknown Variance

Our approach mimics the same approach from Algorithm KnownVar but without the knowledge of the variance.

- Goal: Find a suitably large yet sufficiently tight interval [s_{1}, s_{2}].
Problem: This cannot be done using the off-the-shelf Bit Flipping mechanism as that required we know the granularity of each bin in advance.
- Solution: We abandon the idea of finding a histogram on the data. Instead, we propose finding a good approximation for σ using a quantile estimation based on a binary search, using the following algorithm

Require: Data $\left\{x_{1}, \cdots, x_{N}\right\}$, target quantile $p^{*} ; \epsilon,\left[Q_{\min }, Q_{\max }\right]$

 λ, TInitialize $j=0, n=N / T, s_{1}=Q_{\min }, s_{2}=Q_{\max }$.
for $j=1, \cdots, T$ do
Select users $\mathcal{U}^{(j)}=\{j \cdot n+1, j \cdot n+2, \cdots,(j+1) \cdot n\}$ Set $t^{(j)} \leftarrow \frac{s_{1}+s_{2}}{2}$
Denote $\phi^{(j)}\left(x^{2}\right)=\mathbb{1}\left\{x<t^{(j)}\right\}$.
Run randomized response on $\mathcal{U}^{(j)}$ and obtain

$$
Z^{(j)}=\frac{1}{n} \hat{\theta}_{\mathrm{RR}}\left(n, \phi^{(j)}\right) .
$$

if $\left(Z^{(j)}>p^{*}+\frac{\lambda}{2}\right)$ then
$s_{2} \leftarrow t^{(j)}$
else if $\left(Z^{(j)}<p^{*}-\frac{\lambda}{2}\right)$ then
$s_{1} \leftarrow t^{(j)}$
else
break
Ensure: $t^{(j)}$
Our algorithm UnkVar uses the quantile estimation twice: once for $p^{*}=\frac{1}{2}$ where $t^{*}=\mu$, and once for the value of
$p^{*}=\boldsymbol{\Phi}(1) \approx 0.8413$ for which the corresponding threshold is
$t^{*}=\mu+\sigma$. Using these two values we obtain estimations for
$\boldsymbol{\mu}, \boldsymbol{\sigma}$ and we apply a similar approach to Algorithm KnownVar.

UnkVar properties

- Privacy: UnkVar is (ϵ, δ)-LDP.
- Confidence Interval: Let $\mathbf{X} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ i.i.d. Fix parameters $\epsilon, \beta \in(0,1 / 2)$. Given that $\mu \in[-R, R]$ and that $\sigma_{\text {min }} \leq \sigma \leq \sigma_{\text {max }} \leq 2 R$, if

$$
n \geq 1500 \log _{2}\left(\frac{16 R}{\sigma_{\min }}\right) \cdot\left(\frac{e^{\epsilon}+1}{e^{\epsilon}-1}\right)^{2} \cdot \ln \left(\frac{16 \log _{2}\left(16 R / /_{\min }\right)}{\beta}\right)
$$

then the interval $\hat{\imath}$ returned by Algorithm UnkVar satisfies

$$
\hat{\imath}=O\left(\sigma \cdot \frac{\sqrt{\log (n / \beta) \log (1 / \beta) \log (1 / \delta)}}{\epsilon \sqrt{n}}\right)
$$

- Very large variance case: If $\sigma>R$ we give a different algorithm, based on matching quantiles. We estimate $p_{-}=\operatorname{Pr}[X<-R]$ and $p_{+}=\operatorname{Pr}[X<R]$, then plot the Gaussian based on the quantiles of $\mathcal{\mathcal { N }}(\mathbf{0}, \mathbf{1})$ obtaining p_{-} and p_{+}.

References

[1] Bassily and Smith. Local, private, efficient protocols for succinct histograms. In STOC'15.
[2] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT06, 2006.
[3] V. Karwa and S. P. Vadhan. Finite sample differentially private confidence intervals. In ITCS18.
[4] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova and A. D. Smith. What can we learn privately? In FOCS08.
[5] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statiseliminating evasive answer bias. Jound
tical Association, 60:63-69, 1965.

