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Mean estimation (ME)

I Setting: We have n samples drawn from a Gaussian

X1, ...,Xn ∼i.i.d N (µ, σ2)

such that µ ∈ [−R,R] for some known bound R, and σ is
either provided as an input (known variance case) or left
unspecified (unknown variance case).

I Goal: Determine an estimate of µ useful for Z-test and for
releasing confidence intervals:

P
X

i .i .d .∼ N (µ,σ2),M(X)

[µ ∈M(X)] ≥ 1− β

The Need for Privacy

I Data may contain sensitive information.

I Releasing the result may leak information

Modified Goal: Determine an estimate of µ which preserves
the privacy of those in the study and that is useful for Z-test
and for releasing confidence interval.

Local Differential Privacy [4] (LDP)

I Central Model: Data is submitted in the clear to a trusted
curator and the output of a statistic on the data is privatized.

I Local Model: No trusted curator - data is privatized and
then collected.

I An algorithm M : X → O is ε-differentially private if for all
inputs, x , x ′ and outcome sets S ⊆ O:

P [M(x) ∈ S] ≤ eεP [M(x ′) ∈ S] .

I Local model of differential privacy is used in practice.

LDP randomizers properties

We use the following mechanisms

I Gaussian Noise [2]: Suppose each datum is sampled from
an interval I of length `. Then we add independent noise

N (0, 2`2 ln(2/δ)/ε2)

to each datum guaranteeing (ε, δ)-differential privacy.

I Randomized Response [5]: Suppose each datum is a bit
{0, 1} and on each datum we operate independently,
applying RRε : {0, 1} → {0, 1} where

RRε(b) =

{
b w.p. eε

1+eε

1− b else

I Bit Flipping algorithm [1]: Suppose each datum xi is a
d -dimensional vector indicating its type using a standard
basis vector. The Bit Flipping mechanism now runs d
independent randomized response mechanism for each
coordinate separately with parameter ε/2:

BF(x1
i , . . . , x

d
i ) = (RRε/2(x1

i ), . . . ,RRε/2(xd
i ))

LDP ME - Known Variance

Our approach is inspired by the work of Karwa and Vadhan [3].
We adapt it to the local model.

KnownVar (X;σ, β, ε, n,R) (sketch)

1. Find a bin of length σ most likely to hold µ

2. Construct an interval of length 4σ + 2σ
√

2 log (8n/β)
centered at this bin

3. Project all remaining points onto this interval and add
ind. Gaussian noise.

KnownVar properties

I Privacy: KnownVar is (ε, δ)-LDP.

I Confidence Interval: If n ≥ 1600
(

eε/2+1
eε/2−1

)2
log
(

8d
β

)
,

then KnownVar returns an interval I such that:
P

X,KnownVar
[ mu ∈ I ] ≥ 1− β. whose size is:

|I | = O

(
σ ·

√
log (n/β) · log (1/β) · log(1/δ)

ε
√

n

)

Locally Private Z-test

I For any interval on the reals I we can associate a likelihood

of pI
def
= P

X∼P
[X ∈ I ], and we know that w.p. pI ± β it

indeed holds that µ ∈ I .

I This mimics the power of a Z -test — in particular we can
now compare two intervals as to which one is more likely to
hold µ, compare populations, etc.

I Below are results showing the empirical p-values and power
averaged over 100 trials for various privacy parameters.
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Lower Bounds

I Main Lemma: LetM be a one-shot (each individual is
presented with a single query) local ε-differentially private
mechanism. Let P and Q be two distributions, with

∆
def
= dTV(P,Q). Fix any 0 < δ < e−1 and set

ε∗ = 8ε∆
√

n
(√

1
2

ln(2/δ) + 16ε∆
√

n
)

. Then, for any

set S of outputs,

Pr
X

i.i.d∼ P; M
[M(X ∈ S] ≤ eε

∗
Pr

X
i.i.d∼ Q; M

[M(X) ∈ S] + δ

I Lower bound: Any one-shot local differentially private
algorithm must return an interval of length

Ω

(
σ
√

log(1/β)

ε
√

n

)
I Lower bound: LetM be a ε-LDP mechanism which is

(αdist, αquant, β)-useful for the p-quantile problem over P ,
given that the true p-quantile lies in the interval [−R,R].
Then, for any β < 1

6
it must hold that

n ≥ Ω( 1
α2

quantε
2 · ln( R

αdistβ
)).

LDP ME - Unknown Variance

Our approach mimics the same approach from
Algorithm KnownVar but without the knowledge of the
variance.

I Goal: Find a suitably large yet sufficiently tight interval
[s1, s2].

I Problem: This cannot be done using the off-the-shelf Bit
Flipping mechanism as that required we know the granularity
of each bin in advance.

I Solution: We abandon the idea of finding a histogram on the
data. Instead, we propose finding a good approximation for
σ using a quantile estimation based on a binary search,
using the following algorithm.

Algorithm BinQuant
Require: Data {x1, · · · , xN}, target quantile p∗; ε, [Qmin,Qmax],
λ, T .
Initialize j = 0, n = N/T , s1 = Qmin, s2 = Qmax.
for j = 1, · · · ,T do

Select users U (j) = {j · n + 1, j · n + 2, · · · , (j + 1) · n}
Set t(j) ← s1+s2

2

Denote φ(j)(x) = 1{x < t(j)}.
Run randomized response on U (j) and obtain

Z (j) = 1
n θ̂RR(n, φ(j)).

if (Z (j) > p∗ + λ
2

) then

s2 ← t(j)

else if (Z (j) < p∗ − λ
2

) then

s1 ← t(j)

else
break

Ensure: t(j)

Our algorithm UnkVar uses the quantile estimation twice: once
for p∗ = 1

2
where t∗ = µ, and once for the value of

p∗ = Φ(1) ≈ 0.8413 for which the corresponding threshold is
t∗ = µ + σ. Using these two values we obtain estimations for
µ, σ and we apply a similar approach to Algorithm KnownVar.

UnkVar properties

I Privacy: UnkVar is (ε, δ)-LDP.

I Confidence Interval: Let X ∼ N (µ, σ2) i.i.d. Fix
parameters ε, β ∈ (0, 1/2). Given that µ ∈ [−R,R] and
that σmin ≤ σ ≤ σmax ≤ 2R, if

n ≥ 1500 log2(16R
σmin

) ·
(

eε+1
eε−1

)2
· ln(16 log2(16R/σmin)

β
)

then the interval Î returned by Algorithm UnkVar satisfies

that P
X, UnkVar

[
Î 3 µ

]
≥ 1− β, and moreover

Î = O

(
σ ·

√
log (n/β) log (1/β) log(1/δ)

ε
√

n

)
I Very large variance case: If σ > R we give a different

algorithm, based on matching quantiles. We estimate
p− = Pr[X < −R] and p+ = Pr[X < R], then plot the
Gaussian based on the quantiles of N (0, 1) obtaining p−
and p+.
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