Math 500, Homework 6

Paths, homotopies, and the fundamental group
Due Thursday, 11/30

Reading §51,52

Exercises (to do on your own)

1. Prove that a group G has a unique identity element. Prove that a group element $g \in G$ has a unique inverse.
2. Let G and H be groups (with identity elements e_{G} and e_{H}). Suppose $\varphi: G \rightarrow H$ is a homomorphism. Define $\operatorname{ker} \varphi=\varphi^{-1}\left(\left\{e_{H}\right\}\right)=\left\{g \in G: \varphi(g)=e_{H}\right\}$ (the "kernel" of φ).
(a) Prove that if g^{-1} is the inverse of $g \in G$, then $\varphi\left(g^{-1}\right)$ is the inverse of $\varphi(g)$.
(b) Prove that ker φ is a subgroup of G.
(c) Prove that φ is injective if and only if $\operatorname{ker} \varphi=\left\{e_{H}\right\}$. (In this case, we say φ has "trivial kernel.")
3. Prove that the map $\varphi: G \rightarrow H$ defined by $\varphi(g)=e_{H}$ is a homomorphism. (This is called the "trivial homomorphism".)
4. Verify that the set of integers \mathbb{Z}, together with the operation of addition + , forms a group. Are the integers a group under the operation of multiplication?
5. Prove that the straight-line homotopy between continuous maps $f, g: X \rightarrow \mathbb{R}^{n}$ is continuous. (Go ahead and assume a version of Lemma 21.4 for addition of vectors and scalar multiplication of vectors.)

Problems (to turn in)

1. Munkres $\S 51$, exercise 3 (look at exercise 2 for the definition of $[X, Y]$ and the first definition in $\S 51$ for nulhomotopic).
2. Munkres $\S 52$, exercise 1.
3. Munkres $\S 52$, exercise 4.
