Math 240: Triple Integrals

Ryan Blair subbing for Phil Gressman

University of Pennsylvania

Thursday February 2, 2012

Ryan Blair subbing for Phil Gressman (U Pen

Math 240: Triple Integrals

ヨト・イヨト Thursday February 2, 2012 1/6

3

< 口 > < 同

Ryan Blair subbing for Phil Gressman (U Pen

Math 240: Triple Integrals

Thursday February 2, 2012 2 / 6

Ξ

900

・ロト ・四ト ・ヨト ・ヨト

Today's Goals

- Be able to set up and evaluate triple integrals in cartesian coordinates.
- Be able to set up and evaluate triple integrals in cylindrical coordinates.
- Be able to set up and evaluate triple integrals in spherical coordinates

イロト イポト イヨト イヨト

Triple integrals

Suppose a function F is defined on a bounded region D in 3-space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose a function F is defined on a bounded region D in 3-space. Cut D up into pieces using a rectangular grid. Label the pieces $D_1, ..., D_n$ and let V_k be the volume of D_k for each k.

イロト イポト イヨト イヨト 二日

Suppose a function F is defined on a bounded region D in 3-space. Cut D up into pieces using a rectangular grid. Label the pieces $D_1, ..., D_n$ and let V_k be the volume of D_k for each k. Let |P| be the length of the longest side of any box appearing in the rectangular grid.

イロト イポト イヨト イヨト 二日

Suppose a function F is defined on a bounded region D in 3-space. Cut D up into pieces using a rectangular grid. Label the pieces $D_1, ..., D_n$ and let V_k be the volume of D_k for each k. Let |P| be the length of the longest side of any box appearing in the rectangular grid.

Choose some point (x_k^*, y_k^*, z_k^*) in each D_k

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ・

Suppose a function F is defined on a bounded region D in 3-space. Cut D up into pieces using a rectangular grid. Label the pieces $D_1, ..., D_n$ and let V_k be the volume of D_k for each k. Let |P| be the length of the longest side of any box appearing in the rectangular grid.

Choose some point (x_k^*, y_k^*, z_k^*) in each D_k

$$\int \int \int F(x,y,z) dV = \lim_{|P| \to 0} \sum_{k=1}^{n} F(x_k^*,y_k^*,z_k^*) V_k$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ・

Evaluating a Triple Integral

To evaluate a triple integral you must cut the region you are integrating over into pieces of the form $a \le x \le b$ and $f_1(x) \le y \le f_2(x)$ and $h_1(x, y) \le z \le h_2(x, y)$.

$$\int \int \int F(x, y, z) dV = \int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} F(x, y, z) dz dy dx$$

Evaluating a Triple Integral in Cylindrical

To evaluate a triple integral you must cut the region you are integrating over into pieces of the form $a \le \theta \le b$ and $f_1(\theta) \le r \le f_2(\theta)$ and $h_1(r, \theta) \le z \le h_2(r, \theta)$.

$$\int \int \int F(x,y,z)dV = \int_{a}^{b} \int_{f_{1}(\theta)}^{f_{2}(\theta)} \int_{h_{1}(r,\theta)}^{h_{2}(r,\theta)} F(x,y,z)rdzdrd\theta$$