Math 240: Triple Integrals

Ryan Blair subbing for Phil Gressman

University of Pennsylvania

Thursday February 2, 2012

Outline

(1) Today's Goals

(2) Triple Integrals

Today's Goals

(1) Be able to set up and evaluate triple integrals in cartesian coordinates.
(2) Be able to set up and evaluate triple integrals in cylindrical coordinates.
(3) Be able to set up and evaluate triple integrals in spherical coordinates

Triple integrals

Suppose a function F is defined on a bounded region D in 3-space.

Triple integrals

Suppose a function F is defined on a bounded region D in 3 -space. Cut D up into pieces using a rectangular grid. Label the pieces D_{1}, \ldots, D_{n} and let V_{k} be the volume of D_{k} for each k.

Triple integrals

Suppose a function F is defined on a bounded region D in 3 -space. Cut D up into pieces using a rectangular grid. Label the pieces D_{1}, \ldots, D_{n} and let V_{k} be the volume of D_{k} for each k. Let $|P|$ be the length of the longest side of any box appearing in the rectangular grid.

Triple integrals

Suppose a function F is defined on a bounded region D in 3 -space. Cut D up into pieces using a rectangular grid. Label the pieces D_{1}, \ldots, D_{n} and let V_{k} be the volume of D_{k} for each k. Let $|P|$ be the length of the longest side of any box appearing in the rectangular grid.
Choose some point $\left(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}\right)$ in each D_{k}

Triple integrals

Suppose a function F is defined on a bounded region D in 3 -space. Cut D up into pieces using a rectangular grid. Label the pieces D_{1}, \ldots, D_{n} and let V_{k} be the volume of D_{k} for each k. Let $|P|$ be the length of the longest side of any box appearing in the rectangular grid.
Choose some point $\left(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}\right)$ in each D_{k}

$$
\iiint F(x, y, z) d V=\lim _{|P| \rightarrow 0} \sum_{k=1}^{n} F\left(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}\right) V_{k}
$$

Evaluating a Triple Integral

To evaluate a triple integral you must cut the region you are integrating over into pieces of the form $a \leq x \leq b$ and $f_{1}(x) \leq y \leq f_{2}(x)$ and $h_{1}(x, y) \leq z \leq h_{2}(x, y)$.

$$
\iiint F(x, y, z) d V=\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} F(x, y, z) d z d y d x
$$

Evaluating a Triple Integral in Cylindrical

To evaluate a triple integral you must cut the region you are integrating over into pieces of the form $a \leq \theta \leq b$ and $f_{1}(\theta) \leq r \leq f_{2}(\theta)$ and $h_{1}(r, \theta) \leq z \leq h_{2}(r, \theta)$.

$$
\iiint F(x, y, z) d V=\int_{a}^{b} \int_{f_{1}(\theta)}^{f_{2}(\theta)} \int_{h_{1}(r, \theta)}^{h_{2}(r, \theta)} F(x, y, z) r d z d r d \theta
$$

