Math 240: Solving Systems of DEs by Diagonalization

Ryan Blair

University of Pennsylvania

Monday April 9, 2012

Outline

- Review
- 2 Today's Goals
- 3 Diagonalization and Systems
- Review of Power Series

Review of Last Time

Used phase portraits to make qualitative and quantitative statements about systems.

- Two linear solutions in the phase plane implies
- One linear solution in the phase plane implies
- No linear solutions implies

- Two linear solutions in the phase plane implies two distinct real eigenvalues.
- One linear solution in the phase plane implies
- No linear solutions implies

- Two linear solutions in the phase plane implies two distinct real eigenvalues.
- One linear solution in the phase plane implies one repeated real eigenvalue.
- No linear solutions implies

- Two linear solutions in the phase plane implies two distinct real eigenvalues.
- One linear solution in the phase plane implies one repeated real eigenvalue.
- No linear solutions implies complex eigenvalues.

Today's Goals

- Use diagonalization to solve systems of linear DEs.
- Review power series.

Coupled and Uncoupled Systems

Definition

A system $\mathbf{X}' = \mathbf{A}\mathbf{X}$ is **uncoupled** if each equation is of the form $x'_i = c_i x_i$ where c_i is some constant.

Coupled and Uncoupled Systems

Definition

A system $\mathbf{X}' = \mathbf{A}\mathbf{X}$ is **uncoupled** if each equation is of the form $x_i' = c_i x_i$ where c_i is some constant.

If **A** is diagnolizable, then the system X' = AX can be uncoupled.

Recall the following theorem from Linear Algebra

Theorem

If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Recall the following theorem from Linear Algebra

Theorem

If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Given a system $\mathbf{X}' = \mathbf{A}\mathbf{X}$. Suppose \mathbf{A} is diagnolizable (i.e. $P^{-1}AP = D$).

Recall the following theorem from Linear Algebra

Theorem

If an $n \times n$ matrix A has n linearly independent eigenvectors, then A is diagnolizable.

Given a system $\mathbf{X}' = \mathbf{A}\mathbf{X}$. Suppose **A** is diagnolizable (i.e. $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}$)

$$P^{-1}AP=D).$$

If X = PY is a solution to X' = AX, then

$$\mathbf{Y} = \left[egin{array}{c} c_1 e^{\lambda_1 t} \ dots \ c_n e^{\lambda_n t} \end{array}
ight]$$

Review of Power Series

Definition

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

is a power series centered at a.

Review of Power Series

Definition

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

is a power series centered at a.

$$e^{x} = \sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}$$

Review of Power Series

Definition

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

is a power series centered at a.

$$e^{x} = \sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}$$

Definition

The **radius of convergence** is the largest R such that $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges for all x such that |x-a| < R.

Finding the Radius of Convergence

Ratio Test

Let

$$\lim_{n\to\infty} \left| \frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n} \right| = |x-a| \lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = L$$

If L < 1 the series converges. If L > 1 the series diverges. If L = 1 we don't know.

Finding the Radius of Convergence

Ratio Test

Let

$$\lim_{n\to\infty} \left| \frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n} \right| = |x-a| \lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = L$$

If L < 1 the series converges. If L > 1 the series diverges. If L = 1 we don't know.

Find the radius of convergence for $\sum_{n=0}^{\infty} \frac{(x)^n}{n!}$

