Even More Power Series Solutions to D.E.s at Regular Singular Points

Ryan Blair
University of Pennsylvania
Monday April 23, 2012

Outline

(1) Final info
(2) The Exceptional cases of the Frobenius' Theorem

Final exam info

(1) Friday May 4th from noon to 2 pm in Stitler Hall
(2) One $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes allowed.
(3) Arrive 5 to 10 min early
(9) Must bring student ID.

Final exam info

(1) Friday May 4th from noon to 2 pm in Stitler Hall
(2) One $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes allowed.
(3) Arrive 5 to 10 min early
(- Must bring student ID.
Help and study materials
(1) My office hours this week: Mon 2-3, Wed 10:30-11:30, Fri 10:30-11:30
(2) My office hours next week: Mon 10:30-11:30, Wed 10:30-11:30, Thurs 5-7
(3) Tomorrow Recitation
(9) Practice final and solutions posted later this week
(5) Old Practice finals, and old finals

The Frobenius method for find solutions at regular singular points

To solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ at a regular singular point x_{0}, substitute

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

and solve for r and the c_{n} to find a series solution centered at x_{0}.

The Frobenius method for find solutions at regular singular points

To solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ at a regular singular point x_{0}, substitute

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

and solve for r and the c_{n} to find a series solution centered at x_{0}. We may not find two linearly independent solutions this way!

Today's Goals

(1) Deal with exceptional cases of finding power series solutions to D.E.s at regular singular points.

Indicial Roots

To find the r in $y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}$ we substitute the series into $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

Indicial Roots

To find the r in $y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}$ we substitute the series into $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ and equate the total coefficient of the lowest power of x to zero. This will be a quadratic equation in r.

The roots, r_{1} and r_{2}, we get are the indicial roots of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Cases

Case 1: If r_{1} and r_{2} are distinct and do not differ by an integer, then we get two linearly independent solutions

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

Cases

Case 1: If r_{1} and r_{2} are distinct and do not differ by an integer, then we get two linearly independent solutions

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

Case 2: In all other cases we get two linearly independent solutions of the form

$$
y_{1}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r_{1}} \text { and } y_{2}=C y_{1}(x) \ln (x)+\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}}
$$

