# More Power Series Solutions to D.E.s at Regular Singular Points

Ryan Blair

University of Pennsylvania

Friday April 20, 2012

# Outline

Review



Given a differential equation y'' + P(x)y' + Q(x)y = 0

#### **Definition**

A point  $x_0$  is an **ordinary point** if both P(x) and Q(x) are analytic at  $x_0$ . If a point in not ordinary it is a **singular point**.



3 / 4

Given a differential equation y'' + P(x)y' + Q(x)y = 0

## **Definition**

A point  $x_0$  is an **ordinary point** if both P(x) and Q(x) are analytic at  $x_0$ . If a point in not ordinary it is a **singular point**.

## **Definition**

A point  $x_0$  is a **regular singular point** if the functions  $(x - x_0)P(x)$  and  $(x - x_0)^2Q(x)$  are both analytic at  $x_0$ . Otherwise  $x_0$  is irregular.



#### **Theorem**

(Frobenius' Theorem) If  $x_0$  is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y=\sum_{n=0}^{\infty}c_n(x-x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing  $x_0$ 



#### **Theorem**

(Frobenius' Theorem)

If  $x_0$  is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing  $x_0$ 

To solve y'' + P(x)y' + Q(x)y = 0 at a regular singular point  $x_0$ , substitute

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

and solve for r and the  $c_n$  to find a series solution centered at  $x_0$ . We may not find two linearly independent solutions this way!