More Power Series Solutions to D.E.s at Regular Singular Points

Ryan Blair

University of Pennsylvania
Friday April 20, 2012

Outline

(1) Review

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Definition

A point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Definition

A point x_{0} is a regular singular point if the functions $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are both analytic at x_{0}. Otherwise x_{0} is irregular.

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

Theorem

(Frobenius' Theorem)
If x_{0} is a regular singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then there exists a solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_{0}

To solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ at a regular singular point x_{0}, substitute
$y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}$
and solve for r and the c_{n} to find a series solution centered at x_{0}. We may not find two linearly independent solutions this way!

