Math 240: Power Series Solutions to D.E.s at Singular Points

Ryan Blair

University of Pennsylvania

Wednesday April 18, 2012

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at Wednesday April 18, 2012 1 / 7

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at Wednesday April 18, 2012 2 / 7

・ロト ・ 四ト ・ ヨト ・ ヨト

1

Review

• Found power series solutions to D.E.s at ordinary points.

Ryan Blair (U Penn)

Math 240: Power Series Solutions to D.E.s at Wednesday April 18, 2012 3 / 7

イロト イポト イヨト イヨト

Solving D.E.s Using Power Series

Given the differential equation y'' + P(x)y' + Q(x)y = 0, substitute

$$y=\sum_{n}^{\infty}c_{n}(x-a)^{n}$$

and solve for the c_n to find a power series solution centered at a.

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Solving D.E.s Using Power Series

Given the differential equation y'' + P(x)y' + Q(x)y = 0, substitute

$$y=\sum_{n}^{\infty}c_{n}(x-a)^{n}$$

and solve for the c_n to find a power series solution centered at a. Solve the following D.E.

$$y''-2xy'+y=0$$

Ryan Blair (U Penn)

・ロ > (□ > (□ > (□ >) (□ >

• Find power series solutions to D.E.s at singular points.

イロト イポト イヨト イヨト

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

白 医牙周下 医医下下 医

Given a differential equation y'' + P(x)y' + Q(x)y = 0

Definition

A point x_0 is an **ordinary point** if both P(x) and Q(x) are analytic at x_0 . If a point in not ordinary it is a **singular point**.

Definition

A point x_0 is a **regular singular point** if the functions $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ are both analytic at x_0 . Otherwise x_0 is irregular.

ロト スポト イヨト イヨト 一日

Theorem

(Frobenius' Theorem)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

(B) < (B)</p>

- 3

Theorem

(Frobenius' Theorem)

If x_0 is a regular singular point of y'' + P(x)y' + Q(x)y = 0, then there exists a solution of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

where r is some constant to be determined and the power series converges on a non-empty open interval containing x_0

To solve y'' + P(x)y' + Q(x)y = 0 at a regular singular point x_0 , substitute

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$$

and solve for r and the c_n to find a series solution centered at x_{0} .

Ryan Blair (U Penn)

Sar