Math 240: Power Series Solutions to D.E.s

Ryan Blair
University of Pennsylvania
Friday April 13, 2012

Outline

(1) Power Series

Today's Goals

(1) Find power series solutions to D.E.

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

is a power series centered at a.

Definition

A function f is analytic at a point a if it can be represented by a power series in $x-a$ with a positive radius of convergence.

Definition

A function f is analytic at a point a if it can be represented by a power series in $x-a$ with a positive radius of convergence.

Definition

Given a differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, a point x_{0} is an ordinary point if both $P(x)$ and $Q(x)$ are analytic at x_{0}. If a point in not ordinary it is a singular point.

Theorem

If x_{0} is an ordinary point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, there are always two linearly independent power series solutions centered at x_{0} and each has a radius of convergence at least the distance from x_{0} to the closest singular point.

Solving D.E.s Using Power Series

Given the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, substitute

$$
y=\sum_{n}^{\infty} c_{n}(x-a)^{n}
$$

and solve for the c_{n} to find a power series solution centered at a.

