Math 240: Sequences, Series and Power Series

Ryan Blair
University of Pennsylvania
Monday April 9, 2012

Outline

(1) Review of Power Series

Review of Sequences

Definition

A sequence is a infinite collection of numbers, one for each natural number, and is denoted by $\left\{a_{n}\right\}_{n=0}^{\infty}$.

Review of Sequences

Definition

A sequence is a infinite collection of numbers, one for each natural number, and is denoted by $\left\{a_{n}\right\}_{n=0}^{\infty}$.

Definition

A sequence converges to L if for every $\epsilon>0$ there exists N such that $\left|a_{n}-L\right|<\epsilon$ for all $n>N$.

Review of Sequences

Definition

A sequence is a infinite collection of numbers, one for each natural number, and is denoted by $\left\{a_{n}\right\}_{n=0}^{\infty}$.

Definition

A sequence converges to L if for every $\epsilon>0$ there exists N such that $\left|a_{n}-L\right|<\epsilon$ for all $n>N$.

If $\left\{a_{n}\right\}_{n=0}^{\infty}$ converges to L we say $\lim _{n \rightarrow \infty} a_{n}=L$.

Review of Series

Definition

An series is a sum of infinitely many numbers, one for each natural number, and is denoted by $\sum_{n=0}^{\infty} a_{n}$.

Review of Series

Definition

An series is a sum of infinitely many numbers, one for each natural number, and is denoted by $\sum_{n=0}^{\infty} a_{n}$.

Definition

Given a series $\sum_{n=0}^{\infty} a_{n}$, its sequence of partial sums is $\left\{\sum_{i=0}^{n} a_{i}\right\}_{n=0}^{\infty}$.

Review of Series

Definition

An series is a sum of infinitely many numbers, one for each natural number, and is denoted by $\sum_{n=0}^{\infty} a_{n}$.

Definition

Given a series $\sum_{n=0}^{\infty} a_{n}$, its sequence of partial sums is $\left\{\sum_{i=0}^{n} a_{i}\right\}_{n=0}^{\infty}$.

Definition

A series converges to L if its sequence of partial sums converges to L.

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

is a power series centered at a.

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

is a power series centered at a.

Definition

The Taylor Series of $f(x)$ about $x=a$ is

$$
\sum_{n=0}^{\infty} \frac{f^{\{n\}}}{n!}(x-a)^{n}
$$

Review of Power Series

Definition

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

is a power series centered at a.

Definition

The Taylor Series of $f(x)$ about $x=a$ is

$$
\Sigma_{n=0}^{\infty} \frac{f^{\{n\}}}{n!}(x-a)^{n}
$$

A Taylor series always approximates a function at the value a, but how well?

$$
e^{x}=\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}
$$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}
$$

Definition

The radius of convergence is the largest R such that $\sum_{n=o}^{\infty} c_{n}(x-a)^{n}$ converges for all x such that $|x-a|<R$.

$$
e^{x}=\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}
$$

Definition

The radius of convergence is the largest R such that $\sum_{n=o}^{\infty} c_{n}(x-a)^{n}$ converges for all x such that $|x-a|<R$.

What is the radius of convergence for the Taylor series for e^{x} at $x=0$?

Finding the Radius of Convergence

Ratio Test

Let

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L
$$

If $L<1$ the series converges. If $L>1$ the series diverges. If $L=1$ we don't know.

Finding the Radius of Convergence

Ratio Test

Let

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L
$$

If $L<1$ the series converges. If $L>1$ the series diverges. If $L=1$ we don't know.

Find the radius of convergence for $\sum_{n=o}^{\infty} \frac{(x)^{n}}{n!}$

Necessary Algebra Skills

(1) Shifting the summation index
(2) Adding two power series

