Math 240: Cauchy-Euler Equations

Ryan Blair

University of Pennsylvania

Wednesday March 28, 2012

Today's Goals

(1) Learn how to solve Cauchy-Euler Equations.

Cauchy-Euler Equations

Goal: To solve homogeneous DEs that are not constant-coefficient.

Cauchy-Euler Equations

Goal: To solve homogeneous DEs that are not constant-coefficient.

Definition

Any linear differential equation of the form

$$
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} x \frac{d y}{d x}+a_{0} y=g(x)
$$

is a Cauchy-Euler equation.

The 2nd Order Case

Try to solve

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=0
$$

by substituting $y=x^{m}$.

The 2nd Order Case

Try to solve

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=0
$$

by substituting $y=x^{m}$.

If m_{1} and m_{2} are distinct real roots to $a m(m-1)+b m+c=0$, then the general solution to this DE is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}
$$

Higher Order DEs and Repeated Roots

For a higher order homogeneous Cauchy-Euler Equation, if m is a root of multiplicity k, then

$$
x^{m}, x^{m} \ln (x), \ldots, x^{m}(\ln (x))^{k-1}
$$

are k linearly independent solutions

Higher Order DEs and Repeated Roots

For a higher order homogeneous Cauchy-Euler Equation, if m is a root of multiplicity k, then

$$
x^{m}, x^{m} \ln (x), \ldots, x^{m}(\ln (x))^{k-1}
$$

are k linearly independent solutions

Example: What is the solution to

$$
x^{3} y^{\prime \prime \prime}+x y^{\prime}-y=0
$$

Conjugate Complex Roots

Given the DE

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+\ldots c y=0
$$

If $a m(m-1)+b m+c=0$ has complex conjugate roots $\alpha+i \beta$ and $\alpha-i \beta$, then the general solution is

$$
y_{g}=x^{\alpha}\left[c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right]
$$

Conjugate Complex Roots

Given the DE

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+\ldots c y=0
$$

If $a m(m-1)+b m+c=0$ has complex conjugate roots $\alpha+i \beta$ and $\alpha-i \beta$, then the general solution is

$$
y_{g}=x^{\alpha}\left[c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right]
$$

Example: Solve $25 x^{2} y^{\prime \prime}+25 x y^{\prime}+y=0$

