Math 240: Undetermined Coefficients

Ryan Blair

University of Pennsylvania

Monday, March 19, 2012

Outline

- Today's Goals
- 2 Review

Undetermined Coefficients

Today's Goals

• Use the method of undetermined coefficients to solve the nonhomogeneous differential equations.

Auxiliary Equations

Given a linear homogeneous **constant-coefficient** differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + ... a_1 \frac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + ... + a_1 m + a_0 = 0.$$

Auxiliary Equations

Given a linear homogeneous **constant-coefficient** differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + ... a_1 \frac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + ... + a_1 m + a_0 = 0.$$

The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

If m is a real root of the auxiliary equation of multiplicity k then e^{mx} , xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$ are linearly independent solutions.

General Solution from the Auxiliary Equation

- If m is a real root of the auxiliary equation of multiplicity k then e^{mx} , xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$ are linearly independent solutions.
- equation of multiplicity k then $e^{\alpha x} cos(\beta x)$, $xe^{\alpha x} cos(\beta x)$, ..., $x^{k-1} e^{\alpha x} cos(\beta x)$ and $e^{\alpha x} sin(\beta x)$, $xe^{\alpha x} sin(\beta x)$, ..., $x^{k-1} e^{\alpha x} sin(\beta x)$ are linearly independent solutions.

Given a nonhomogeneous differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = g(x)$$

where $a_n, a_{n-1}, ..., a_0$ are constants.

Given a nonhomogeneous differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = g(x)$$

where $a_n, a_{n-1}, ..., a_0$ are constants.

• Step 1: Solve the associated homogeneous equation.

Given a nonhomogeneous differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = g(x)$$

where $a_n, a_{n-1}, ..., a_0$ are constants.

- Step 1: Solve the associated homogeneous equation.
- Step 2: Find a particular solution by analyzing g(x) and making an educated guess.

Given a nonhomogeneous differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = g(x)$$

where $a_n, a_{n-1}, ..., a_0$ are constants.

- Step 1: Solve the associated homogeneous equation.
- Step 2: Find a particular solution by analyzing g(x) and making an educated guess.
- Step 3: Add the homogeneous solution and the particular solution together to get the general solution.

g(x)
constant

Guess

g(x) Guess constant A

g(x)constant $3x^2 - 2$

Guess

1

g(x)constant $3x^2 - 2$

Guess A $Ax^2 + Bx + C$

g(x) Guess A $3x^2-2$ Ax^2+Bx+C Polynomial of degree n

g(x) Guess constant A $3x^2-2$ Ax^2+Bx+C Polynomial of degree n $A_nx^n+A_{n-1}x^{n-1}+...+A_0$

```
g(x) Guess

constant A

3x^2 - 2 Ax^2 + Bx + C

Polynomial of degree n A_nx^n + A_{n-1}x^{n-1} + ... + A_0

cos(4x)
```

g(x)	Guess
constant	A
$3x^2 - 2$	$Ax^2 + Bx + C$
Polynomial of degree n	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_0$
cos(4x)	Acos(4x) + Bsin(4x)

g(x) Guess

constant
$$A$$
 $3x^2 - 2$ $Ax^2 + Bx + C$

Polynomial of degree n $A_nx^n + A_{n-1}x^{n-1} + ... + A_0$
 $cos(4x)$ $Acos(4x) + Bsin(4x)$
 $Acos(nx) + Bsin(nx)$

g(x)	Guess
constant	A
$3x^2 - 2$	$Ax^2 + Bx + C$
Polynomial of degree n	$A_n x^n + A_{n-1} x^{n-1} + + A_0$
cos(4x)	Acos(4x) + Bsin(4x)
Acos(nx) + Bsin(nx)	Acos(nx) + Bsin(nx)

g(x) Guess

constant
$$A$$
 $3x^2 - 2$ $Ax^2 + Bx + C$

Polynomial of degree n $A_nx^n + A_{n-1}x^{n-1} + ... + A_0$
 $cos(4x)$ $Acos(4x) + Bsin(4x)$
 $Acos(nx) + Bsin(nx)$ $Acos(nx) + Bsin(nx)$
 e^{4x}

g(x) Guess

constant
$$A$$
 $3x^2 - 2$ $Ax^2 + Bx + C$

Polynomial of degree n $A_nx^n + A_{n-1}x^{n-1} + ... + A_0$
 $cos(4x)$ $Acos(4x) + Bsin(4x)$
 $Acos(nx) + Bsin(nx)$ $Acos(nx) + Bsin(nx)$
 e^{4x} Ae^{4x}

g(x)	Guess
constant	A
$3x^2 - 2$	$Ax^2 + Bx + C$
Polynomial of degree n	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_0$
cos(4x)	Acos(4x) + Bsin(4x)
Acos(nx) + Bsin(nx)	Acos(nx) + Bsin(nx)
e^{4x}	Ae^{4x}
x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
$e^{2x}cos(4x)$	$Ae^{2x}sin(4x) + Be^{2x}cos(4x)$
3xsin(5x)	(Ax+B)sin(5x)+(Cx+D)cos(5x)
$xe^{2x}cos(3x)$	$(Ax+B)e^{2x}\sin(3x)+(Cx+D)e^{2x}\cos(3x)$

The Guessing Rule

The form of y_p is a linear combination of all linearly independent functions that are generated by repeated differentiation of g(x).

A Problem

Solve $y'' - 5y' + 4y = 8e^x$ using undetermined coefficients.

The solution

When the natural guess for a particular solution duplicates a homogeneous solution, multiply the guess by x^n , where n is the smallest positive integer that eliminates the duplication.