Math 240: Undetermined Coefficients

Ryan Blair

University of Pennsylvania
Monday, March 19, 2012

Outline

(1) Today's Goals

(2) Review

(3) Undetermined Coefficients

Today's Goals

(1) Use the method of undetermined coefficients to solve the nonhomogeneous differential equations.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.
The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

(1) If m is a real root of the auxiliary equation of multiplicity k then
$e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.

General Solution from the Auxiliary Equation

(1) If m is a real root of the auxiliary equation of multiplicity k then $e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.
(2) If $(\alpha+i \beta)$ and $(\alpha+i \beta)$ are a roots of the auxiliary equation of multiplicity k then $e^{\alpha x} \cos (\beta x), x e^{\alpha x} \cos (\beta x), \ldots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, x^{k-1} e^{\alpha x} \sin (\beta x)$ are linearly independent solutions.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.
(2) Step 2: Find a particular solution by analyzing $g(x)$ and making an educated guess.

The Method of Undetermined Coefficients

Given a nonhomogeneous differential equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants.
(1) Step 1: Solve the associated homogeneous equation.
(2) Step 2: Find a particular solution by analyzing $g(x)$ and making an educated guess.
(Step 3: Add the homogeneous solution and the particular solution together to get the general solution.

Guessing Particular Solutions

g(x)
constant

Guess

Guessing Particular Solutions

g(x)
constant

Guess
 A

Guessing Particular Solutions

g(x)
constant
$3 x^{2}-2$

Guess
 A

Guessing Particular Solutions

g(x)
constant
$3 x^{2}-2$

Guess
 A
 $A x^{2}+B x+C$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$

Guess

A
$A x^{2}+B x+C$

Polynomial of degree n

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$ $\cos (4 x)$

Guess

A
$A x^{2}+B x+C$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree $n A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$ $\cos (4 x)$

Guess

A
$A x^{2}+B x+C$ $A \cos (4 x)+B \sin (4 x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$ $A \cos (4 x)+B \sin (4 x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$ $e^{4 x}$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$ $e^{4 x}$

Guess

A
$A x^{2}+B x+C$
$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$
$A e^{4 x}$

Guessing Particular Solutions

$\mathrm{g}(\mathrm{x})$
constant
$3 x^{2}-2$
Polynomial of degree n $\cos (4 x)$
$A \cos (n x)+B \sin (n x)$
$e^{4 x}$
$x^{2} e^{5 x}$
$e^{2 x} \cos (4 x)$
$3 x \sin (5 x)$
$x e^{2 x} \cos (3 x)$

A
$A x^{2}+B x+C$

Guess

$A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{0}$
$A \cos (4 x)+B \sin (4 x)$
$A \cos (n x)+B \sin (n x)$
$A e^{4 x}$
$\left(A x^{2}+B x+C\right) e^{5 x}$
$A e^{2 x} \sin (4 x)+B e^{2 x} \cos (4 x)$
$(A x+B) \sin (5 x)+(C x+D) \cos (5 x)$
$(A x+B) e^{2 x} \sin (3 x)+(C x+D) e^{2 x} \cos (3 x)$

The Guessing Rule

The form of y_{p} is a linear combination of all linearly independent functions that are generated by repeated differentiation of $g(x)$.

A Problem

Solve $y^{\prime \prime}-5 y^{\prime}+4 y=8 e^{x}$ using undetermined coefficients.

The solution

When the natural guess for a particular solution duplicates a homogeneous solution, multiply the guess by x^{n}, where n is the smallest positive integer that eliminates the duplication.

