Math 240: Constant Coefficient Linear Differential Equations

Ryan Blair

University of Pennsylvania
Friday March 16, 2012

Outline

(1) Today's Goals
(2) Solving D.E.s Using Auxiliary Equations

Today's Goals

(1) Use auxiliary equations to solve constant coefficient linear homogeneous D.E.s

Review

(1) If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions to a homogeneous n-th order linear D.E., then $c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ is the general solution.

Review

(1) If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions to a homogeneous n-th order linear D.E., then $c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ is the general solution.
(2) If y_{h} is the homogeneous solution and y_{p} is the particular solution to a non-homogeneous linear D.E., then $y_{h}+y_{p}$ is the general solution.

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

In this case, we get $e^{m x}\left(a m^{2}+b m+c\right)=0$. There are three possibilities for the roots of a quadratic equation.

Case 1: Distinct Roots

If $a m^{2}+b m+c$ has distinct roots m_{1} and m_{2}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Roots

If $a m^{2}+b m+c$ has a repeated root m_{1}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Magic!

$$
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \theta_{7!}^{7}+\ldots
\end{aligned}
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \theta^{5} 5!-\frac{\theta^{6}}{6!}-i \frac{\theta^{7}}{7!}+\ldots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots\right)
\end{aligned}
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{i \theta^{7}}{7!}+\ldots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots\right) \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

Case 3: Complex Roots

If $a m^{2}+b m+c$ has complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.
The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

(1) If m is a real root of the auxiliary equation of multiplicity k then
$e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.

General Solution from the Auxiliary Equation

(3) If m is a real root of the auxiliary equation of multiplicity k then
$e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.
(2) If $(\alpha+i \beta)$ and $(\alpha+i \beta)$ are a roots of the auxiliary equation of multiplicity k then $e^{\alpha x} \cos (\beta x), x e^{\alpha x} \cos (\beta x), \ldots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, x^{k-1} e^{\alpha x} \sin (\beta x)$ are linearly independent solutions.

