Math 240: Divergence Theorem

Ryan Blair

University of Pennsylvania

Monday February 6, 2012

Outline

(1) Review

(2) Today's Goals

Stokes' Theorem

Theorem

Let S be an nice oriented surface bounded by a nice curve C. Let $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ be a nice vector field. If C is traversed in the positive direction and \mathbf{T} is the unit tangent vector to C then

$$
\oint_{C} F \circ d \mathbf{r}=\oint_{C}(F \circ \mathbf{T}) d s=\iint_{S}(\operatorname{curl}(F) \circ \mathbf{n}) d S
$$

where \mathbf{n} is the unit normal to S in the direction of the orientation of S.

Review Question: Let $F=<y^{2}, 2 z+x, 2 y^{2}>$. Find a plane $a x+b y+c z=0$ such that $\oint_{C} F \circ d r=0$ for every smooth simple closed curve C in the plane.

Today's Goals

(1) Understand how to use the Divergence Theorem.

Divergence Theorem

Theorem
Let D be a nice region in 3 -space with nice boundary S oriented outward. Let F be a nice vector field. Then

$$
\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V
$$

where \mathbf{n} is the unit normal vector to S.

Divergence Theorem

Theorem

Let D be a nice region in 3-space with nice boundary S oriented outward. Let F be a nice vector field. Then

$$
\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V
$$

where \mathbf{n} is the unit normal vector to S.
Example Find the flux of $\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes $x=1$, $y=1$ and $z=1$.

Divergence Theorem

Theorem

Let D be a nice region in 3-space with nice boundary S oriented outward. Let F be a nice vector field. Then

$$
\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V
$$

where \mathbf{n} is the unit normal vector to S.
Example: Use the divergence theorem to evaluate $\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S$ where $\mathbf{F}=<x+y, z, z-x>$ and S is the boundary of the region between $z=9-x^{2}-y^{2}$ and the $x y$-plane.

Divergence Theorem

Theorem
Let D be a closed and bounded region in 3-space with a piecewise smooth boundary S that is oriented outward. Let $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a vector field for which P, Q and R are continuous and have continuous first partial derivatives in a region of 3 -space containing D. Then $\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V$ where \mathbf{n} is the unit normal vector to S.

Divergence Theorem

Theorem

Let D be a closed and bounded region in 3-space with a piecewise smooth boundary S that is oriented outward. Let
$F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a vector field for which P, Q and R are continuous and have continuous first partial derivatives in a region of 3-space containing D. Then $\iint_{S}(F \circ \mathbf{n}) d S=\iiint_{D} \operatorname{div}(F) d V$ where \mathbf{n} is the unit normal vector to S.

Example Find the outward flux of

$$
\frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}
$$

across the region D given by $0<a^{2} \leq x^{2}+y^{2}+z^{2} \leq b^{2}$.

