Math 240: Stoke's Theorem

Ryan Blair

University of Pennsylvania
Friday February 3, 2012

Outline

(1) Stokes' Theorem

What to Study for the Midterm

(1) Practice Midterm (Posted this weekend)
(2) My Old Practice Midterm
(http://www.math.upenn.edu/~ryblair/Math240/papers/PracMT2.pdf)
(3) My Old Practice Final
(http://www.math.upenn.edu/~ryblair/Math240/papers/PracFinal.pdf)
(9) Other Old Finals (http://www.math.upenn.edu/ugrad/calc/m240/oldexams.html)
(5) Homework, Quizzes and Examples in Class

Stokes' Theorem

Theorem

Let S be an nice oriented surface bounded by a nice curve C. Let $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ be a nice vector field. If C is traversed in the positive direction and \mathbf{T} is the unit tangent vector to C then

$$
\oint_{C} F \circ d \mathbf{r}=\oint_{C}(F \circ \mathbf{T}) d s=\iint_{S}(\operatorname{curl}(F) \circ \mathbf{n}) d S
$$

where \mathbf{n} is the unit normal to S in the direction of the orientation of S.

Example Use Stokes' theorem to evaluate $\oint_{C} F \circ d \mathbf{r}$ where C is the intersection of $x^{2}+y^{2}=1$ and $x+y+z=1$ oriented counter clockwise from above and $F=y^{3} \mathbf{i}-x^{3} \mathbf{j}+z^{3} \mathbf{k}$.

Example: Use Stokes' theorem to evaluate $\oint_{C} F \circ d \mathbf{r}$ where C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ oriented counterclockwise when viewed from above and $F=(2 z+x) \mathbf{i}+(y-z) \mathbf{j}+(x+y) \mathbf{k}$.

Example: Let S be the portion of $z=x^{2}+4 y^{2}$ lying beneath the plane $z=1$. Orient S upward. Find the flux of $\operatorname{curl}(\mathrm{F})$ across S for $F=y \mathbf{i}-x z \mathbf{j}+x z^{2} \mathbf{k}$.

Stokes' Theorem

Theorem

Let S be a piecewise smooth oriented surface bounded by a piecewise smooth simple closed curve C. Let $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a vector field for which P, Q and R are continuous and have continuous partial derivatives in the region of 3-space containing S. If C is traversed in the positive direction and \mathbf{T} is the unit tangent vector to C then

$$
\oint_{C} F \circ d \mathbf{r}=\oint_{C}(F \circ \mathbf{T}) d s=\iint_{S}(\operatorname{curl}(F) \circ \mathbf{n}) d S
$$

where \mathbf{n} is the unit normal to S in the direction of the orientation of S.

