Math 240: Eigenvalues and Eigenvectors

Ryan Blair

University of Pennsylvania

Monday February 27, 2012

Outline

(1) Review of Eigenvalues and Eigenvectors
(2) Diagonalizability

Today's Goals

(1) Review Eigenvectors and Eigenvalues.
(2) Be able to diagonalize matrices.
(3) Be able to use diagonalization to compute high powers of matrices.

Review of Eigenvalues and Eigenvectors

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Review of Eigenvalues and Eigenvectors

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

The Eigenvalues of a matrix are the solutions to $\operatorname{det}\left(A-\lambda I_{n}\right)=0$, thecharacteristic equation.

Review of Eigenvalues and Eigenvectors

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

The Eigenvalues of a matrix are the solutions to $\operatorname{det}\left(A-\lambda I_{n}\right)=0$, thecharacteristic equation.

For each eigenvalue λ, solve the linear system $\left(A-\lambda I_{n}\right) x=0$ to find the eigenvectors.

Diagonalizability

Definition

An $n \times n$ matrix A is diagonalizable if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1} A P=D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Diagonalizability

Definition

An $n \times n$ matrix A is diagonalizable if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1} A P=D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues. Example: Verify that the following matrix is diagonalizable.
$\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$

Diagonalizability Theorems

Theorem
 A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Diagonalizability Theorems

> Theorem
> A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.
Note:Not all diagonalizable matrices have n distinct eigenvalues.

