Math 240: Eigenvalues and Eigenvectors

Ryan Blair

University of Pennsylvania

Monday February 27, 2012

Ryan Blair (U Penn)

Math 240: Eigenvalues and Eigenvectors

ヨト・イヨト Monday February 27, 2012

Image: Image:

1/6

3

996

イロト イポト イヨト イヨト

- Review Eigenvectors and Eigenvalues.
- Be able to diagonalize matrices.
- Be able to use diagonalization to compute high powers of matrices.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

E

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

글 네 너 글 네

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

The Eigenvalues of a matrix are the solutions to $det(A - \lambda I_n) = 0$, the **characteristic equation**.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

The Eigenvalues of a matrix are the solutions to $det(A - \lambda I_n) = 0$, thecharacteristic equation.

For each eigenvalue λ , solve the linear system $(A - \lambda I_n)x = 0$ to find the eigenvectors.

4 / 6

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Definition

An $n \times n$ matrix A is **diagonalizable** if there exists an $n \times n$ invertible matrix P and an $n \times n$ diagonal matrix D such that $P^{-1}AP = D$.

When A is diagnolizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues. **Example:** Verify that the following matrix is diagonalizable. $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

글 노 네 글

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Note:Not all diagonalizable matrices have n distinct eigenvalues.

6 / 6