Math 240: Eigenvalues and Eigenvectors

Ryan Blair

University of Pennsylvania

Monday February 27, 2012

Outline

1 Eigenvalue and Eigenvector

Today's Goals

- **1** Know how to interpret matrices as maps from \mathbb{R}^n to \mathbb{R}^m .
- 2 Know how to find eigenvalues.
- Mow how to find eigenvectors.

Linear Maps and Eigenvectors

Key idea from last time: Every matrix is a linear map and every linear map is a matrix.

Linear Maps and Eigenvectors

Key idea from last time: Every matrix is a linear map and every linear map is a matrix.

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Types of Linear Maps

The following are types of linear maps

- Reflection about a line in R^2
- 2 Reflection about a plane in R^3
- **3** Orthogonal projection onto an axis in R^2
- **1** Orthogonal projection onto a plane in R^3
- **Solution** Solution The origin in R^2
- **1** Rotation about a line in R^3

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Only square matrices have eigenvectors.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Only square matrices have eigenvectors.

Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to A.

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ .

$$Ax = \lambda x$$

$$Ax - \lambda x = 0$$

$$(A - \lambda I_n)x = 0$$

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ .

$$Ax = \lambda x$$

$$Ax - \lambda x = 0$$

$$(A - \lambda I_n)x = 0$$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ .

$$Ax = \lambda x$$

$$Ax - \lambda x = 0$$

$$(A - \lambda I_n)x = 0$$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

Hence, to find the eigenvalues, we solve the polynomial equation $det(A - \lambda I_n) = 0$ called the **characteristic equation**.

Finding Eigenvectors

For each eigenvalue λ , solve the linear system $(A - \lambda I_n)x = 0$ to find the eigenvectors.