Math 240: Eigenvalues and Eigenvectors

Ryan Blair

University of Pennsylvania

Monday February 27, 2012

Outline

(1) Eigenvalue and Eigenvector

Today's Goals

(1) Know how to interpret matrices as maps from \mathbb{R}^{n} to \mathbb{R}^{m}.
(2) Know how to find eigenvalues.
(3) Know how to find eigenvectors.

Linear Maps and Eigenvectors

Key idea from last time: Every matrix is a linear map and every linear map is a matrix.

Linear Maps and Eigenvectors

Key idea from last time: Every matrix is a linear map and every linear map is a matrix.

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Types of Linear Maps

The following are types of linear maps
(1) Reflection about a line in R^{2}
(2) Reflection about a plane in R^{3}
(3) Orthogonal projection onto an axis in R^{2}
(9) Orthogonal projection onto a plane in R^{3}
(5) Rotation about the origin in R^{2}
(c) Rotation about a line in R^{3}

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to A.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.

$$
\begin{aligned}
& A x=\lambda x \\
& A x-\lambda x=0 \\
& \left(A-\lambda I_{n}\right) x=0
\end{aligned}
$$

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$

For the above to have more than just a trivial solution, $\left(A-\lambda I_{n}\right)$ must be singular.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$

For the above to have more than just a trivial solution, $\left(A-\lambda I_{n}\right)$ must be singular.

Hence, to find the eigenvalues, we solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ called the characteristic equation.

Finding Eigenvectors

For each eigenvalue λ, solve the linear system $\left(A-\lambda I_{n}\right) x=0$ to find the eigenvectors.

