Math 240: Inverses and Eigenvalues

Ryan Blair

University of Pennsylvania

Friday February 24, 2012

Ryan Blair (U Penn)

Math 240: Inverses and Eigenvalues

ラト くらり Friday February 24, 2012 1/9

Image: A matrix

Ξ

Outline

- 2 Properties of Inverses
- 3 Solving a Linear System Using Inverses
- 4 Matrices as Linear Maps
- 5 Eigenvalue and Eigenvector

3

< □ > < 同 >

- Know the properties of inverses.
- Be able to solve systems of linear equations using matrices.
- **③** Know how to interpret matrices as maps from \mathbb{R}^n to \mathbb{R}^m .
- Show how to find eigenvalues.
- Solution Know how to find eigenvectors.

3

Matrix Inverse

Definition

An $n \times n$ matrix A is **invertible** if there exists an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

In this case, B is the **inverse** of A.

3

Properties of Inverses

•
$$(A^{-1})^{-1} = A$$

(cA)⁻¹ = $\frac{1}{c}A^{-1}$

3
$$(AB)^{-1} = B^{-1}A^{-1}$$

- $(A^T)^{-1} = (A^{-1})^T$
- **5** $det(A^{-1}) = \frac{1}{det(A)}$
- A is invertible if and only if $det(A) \neq 0$
- A is invertible if and only if A has maximal rank.

Solving a Linear System Using Inverses

Let A be invertible and Ax = B be a linear system, then the solution to the linear system is given by

$$x = A^{-1}B$$

Solving a Linear System Using Inverses

Let A be invertible and Ax = B be a linear system, then the solution to the linear system is given by

$$x = A^{-1}B$$

Example: Solve the following linear system using inverses.

$$x + z = -4$$
$$x + y + z = 0$$
$$5x - y = 6$$

General maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates w_1, w_2, \dots, w_m . $w_1 = f_1(x_1, x_2, \dots, x_n)$ $w_2 = f_2(x_1, x_2, \dots, x_n)$. . . $w_m = f_m(x_1, x_2, ..., x_n)$

3

General maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = f_1(x_1, x_2, ..., x_n)$ $w_2 = f_2(x_1, x_2, ..., x_n)$... $w_m = f_m(x_1, x_2, ..., x_n)$

Example: Rewrite $g(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$ in this form.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general linear map from \mathbb{R}^n with coordinates x_1, x_2, \dots, x_n to \mathbb{R}^m with coordinates w_1, w_2, \dots, w_m . $w_1 = a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n$ $w_2 = a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n$. . . $w_m = a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n$

3

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general linear map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n$ $w_2 = a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n$... $w_m = a_{m,1}x_1 + a_{m,2}x_2 + ... + a_{m,n}x_n$

Key idea: Matrix-vector multiplication always encodes a linear map from \mathbb{R}^n to \mathbb{R}^m and every linear map from \mathbb{R}^n to \mathbb{R}^m can be encoded as Matrix-vector multiplication.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Types of Linear Maps

The following are types of linear maps

- Reflection about a line in R^2
- 2 Reflection about a plane in R^3
- **③** Orthogonal projection onto an axis in R^2
- Orthogonal projection onto a plane in R^3
- **③** Rotation about the origin in R^2

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Types of Linear Maps

The following are types of linear maps

- Reflection about a line in R^2
- 2 Reflection about a plane in R^3
- **③** Orthogonal projection onto an axis in R^2
- Orthogonal projection onto a plane in R^3
- **③** Rotation about the origin in R^2

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Types of Linear Maps

The following are types of linear maps

- Reflection about a line in R^2
- 2 Reflection about a plane in R^3
- **③** Orthogonal projection onto an axis in R^2
- Orthogonal projection onto a plane in R^3
- **(a)** Rotation about the origin in R^2

Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to *A*.