Math 240: Flux and Stoke's Theorem

Ryan Blair

University of Pennsylvania
Wednesday February 1, 2012

Outline

(1) Flux

(2) Stokes' Theorem

Integrals of vector fields

$$
\begin{gathered}
\iint_{S} G(x, y, z) d S= \\
\iint_{R} G(x, y, f(x, y)) \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
\end{gathered}
$$

Integrals of vector fields

$$
\begin{gathered}
\iint_{S} G(x, y, z) d S= \\
\iint_{R} G(x, y, f(x, y)) \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
\end{gathered}
$$

If F is a vector field and \mathbf{n} is the normal vector to a surface S then the total volume per unit time is the Flux and is given by

$$
\iint_{S}(F \circ \mathbf{n}) d S
$$

Example Let $T(x, y, z)=x^{2}+y^{2}+z^{2}$ model a temperature distribution in 3-space. From physics, heat flow is modeled by $F=-\nabla T$. Find the heat flow out of a sphere of radius a centered at the origin.

notation

Given a curve in 3-space $\mathrm{C}: x=f(t), y=g(t), z=h(t)$.

notation

Given a curve in 3-space $\mathrm{C}: x=f(t), y=g(t), z=h(t)$.
The position vector of C is $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$.

notation

Given a curve in 3-space $\mathrm{C}: x=f(t), y=g(t), z=h(t)$.
The position vector of C is $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$.

$$
d \mathbf{r}=d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}=f^{\prime}(t) d t \mathbf{i}+g^{\prime}(t) d t \mathbf{j}+h^{\prime}(t) d t \mathbf{k}
$$

Stokes' Theorem

Theorem

Let S be an nice oriented surface bounded by a nice curve C. Let $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ be a nice vector field. If C is traversed in the positive direction and \mathbf{T} is the unit tangent vector to C then

$$
\oint_{C} F \circ d \mathbf{r}=\oint_{C}(F \circ \mathbf{T}) d s=\iint_{S}(\operatorname{curl}(F) \circ \mathbf{n}) d S
$$

where \mathbf{n} is the unit normal to S in the direction of the orientation of S.

Example: Use Stokes' theorem to evaluate $\oint_{C} F \circ d \mathbf{r}$ where C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ oriented counterclockwise when viewed from above and $F=(2 z+x) \mathbf{i}+(y-z) \mathbf{j}+(x+y) \mathbf{k}$.

Stokes' Theorem

Theorem

Let S be a piecewise smooth oriented surface bounded by a piecewise smooth simple closed curve C. Let $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a vector field for which P, Q and R are continuous and have continuous partial derivatives in the region of 3-space containing S. If C is traversed in the positive direction and \mathbf{T} is the unit tangent vector to C then

$$
\oint_{C} F \circ d \mathbf{r}=\oint_{C}(F \circ \mathbf{T}) d s=\iint_{S}(\operatorname{curl}(F) \circ \mathbf{n}) d S
$$

where \mathbf{n} is the unit normal to S in the direction of the orientation of S.

