Math 240: Surface Integrals and Flux

Ryan Blair

University of Pennsylvania

Monday January 30, 2012

Outline

(1) Surface Area
(2) Surface Integrals
(3) Flux

Surface Area

Definition

Let $f(x, y)$ be a function with continuous partial derivatives f_{x} and f_{y} defined on a region R. The Area of the surface $z=f(x, y)$ over R is given by

$$
\iint_{R} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
$$

Surface Area

Definition

Let $f(x, y)$ be a function with continuous partial derivatives f_{x} and f_{y} defined on a region R. The Area of the surface $z=f(x, y)$ over R is given by

$$
\iint_{R} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A .
$$

Example: Calculate the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane.

Surface Integral

Just like line integral generalizes arc length integral, surface integral generalizes surface area integral.

Surface Integral

Just like line integral generalizes arc length integral, surface integral generalizes surface area integral.

Definition

Let G be a scalar function and S be a surface given by the graph of $z=f(x, y)$ over the region R. The surface integral of G over S is given by:

$$
\iint_{S} G(x, y, z) d S=
$$

$$
\iint_{R} G(x, y, f(x, y)) \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
$$

Orientations

Definition

An orientable surface has two sides that can be painted red and blue resp.

Orientations

Definition

An orientable surface has two sides that can be painted red and blue resp.

Definition

If a surface S is orientable, then an orientation is a choice of one of two unit normal vectors.

Orientations

Definition

An orientable surface has two sides that can be painted red and blue resp.

Definition

If a surface S is orientable, then an orientation is a choice of one of two unit normal vectors.

Theorem

If a surface is given by $g(x, y, z)=0$ then the unit normals are given by $\mathbf{n}=\frac{ \pm 1}{\|\nabla g\|} \nabla g$

Orientations

Definition

An orientable surface has two sides that can be painted red and blue resp.

Definition

If a surface S is orientable, then an orientation is a choice of one of two unit normal vectors.

Theorem

If a surface is given by $g(x, y, z)=0$ then the unit normals are given by $\mathbf{n}=\frac{ \pm 1}{\|\nabla g\|} \nabla g$

Exercise Find the unit normal vectors to a sphere of radius a.

Integrals of vector fields

Suppose $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ models the velocity of a fluid in 3 -space.

Integrals of vector fields

Suppose $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ models the velocity of a fluid in 3 -space.

Then the volume flowing through a small patch of surface S per unit time is

$$
(F \circ \mathbf{n}) \Delta S .
$$

Where \mathbf{n} is the normal vector to S and ΔS is the area of the patch of surface.

Integrals of vector fields

Suppose $F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ models the velocity of a fluid in 3 -space.

Then the volume flowing through a small patch of surface S per unit time is

$$
(F \circ \mathbf{n}) \Delta S .
$$

Where \mathbf{n} is the normal vector to S and ΔS is the area of the patch of surface.

The total volume per unit time is the Flux and is given by

$$
\iint_{S}(F \circ \mathbf{n}) d S
$$

Example Let $T(x, y, z)=x^{2}+y^{2}+z^{2}$ model a temperature distribution in 3-space. From physics, heat flow is modeled by $F=-\nabla T$. Find the heat flow out of a sphere of radius a centered at the origin.

