Math 240: More of Green's Theorem and Surface Integrals

Ryan Blair

University of Pennsylvania
Friday January 27, 2012

Outline

(1) Today's Goals
(2) Green's Theorem
(3) Surface Area

4 Surface Integrals

Today's Goals

(1) Investigate the implications of Green's Theorem
(2) Be able to calculate surface area.
(3) Be able to calculate surface integrals.

Green's Theorem

Theorem (Green's Theorem)
Suppose C is a piecewise smooth simple closed curve bounding a region R. If $P, Q, \frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A,
$$

where C is oriented counterclockwise.

Green's Theorem: Even when it fails it wins.

Example: Evaluate the following integral where C is the positively oriented ellipse $x^{2}+4 y^{2}=4$.

$$
\oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

The Symmetry Trick

Example:Evaluate the following integral where C is the positively oriented square with vertices $(1,1),(1,-1),(-1,1),(-1,-1)$.

$$
\oint_{C} y e^{x^{2}} d x+x e^{y^{2}} d y
$$

Methods of Evaluating a Line Integral

(1) Parametrization and substitution.
(2) Find a Primitive.
(3) Use Green's Theorem directly.
(3) Use Green's Theorem indirectly to simplify the curve you are integrating along.

Surface Area

Definition

Let $f(x, y)$ be a function with continuous partial derivatives f_{x} and f_{y} defined on a region R. The Area of the surface $z=f(x, y)$ over R is given by

$$
\iint_{R} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
$$

Surface Area

Definition

Let $f(x, y)$ be a function with continuous partial derivatives f_{x} and f_{y} defined on a region R. The Area of the surface $z=f(x, y)$ over R is given by

$$
\iint_{R} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A .
$$

Example: Calculate the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane.

Surface Integral

Just like line integral generalizes arc length integral, surface integral generalizes surface area integral.

Definition

Let G be a scalar function and S be a surface given by the graph of $z=f(x, y)$ over the region R. The surface integral of G over S is given by:

$$
\iint_{S} G(x, y, z) d s=
$$

$$
\iint_{R} G(x, y, f(x, y)) \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} d A
$$

