Math 240: More of Green's Theorem

Ryan Blair

University of Pennsylvania

Wednesday January 25, 2012

Ryan Blair (U Penn)

Math 240: More of Green's Theorem

14 M Wednesday January 25, 2012

→ Ξ →

3

< 口 > < 同

590 1/8

Ryan Blair (U Penn)

Math 240: More of Green's Theorem

Wednesday January 25, 2012

イロト イヨト イヨト イヨト

୬ < ୯ 2 / 8

Ξ

Investigate the implications of Green's Theorem

Wednesday January 25, 2012

イロト イポト イヨト イヨト

୬ < (୦ 3 / 8

Ξ

Theorem (Green's Theorem)

Suppose C is a piecewise smooth simple closed curve bounding a region R. If P, Q, $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then

$$\oint_{\mathcal{C}} \mathcal{P} dx + \mathcal{Q} dy = \int \int_{\mathcal{R}} (\frac{\partial \mathcal{Q}}{\partial x} - \frac{\partial \mathcal{P}}{\partial y}) dA,$$

where C is oriented counterclockwise.

Making Impossible Line Integrals Possible

Example: Evaluate the following line integral on the triangle with vertices (-1, 1), (0, 1) and (0, 0).

$$\oint_C e^{x^2} dx + 2tan^{-1}(x) dy$$

イロト イポト イヨト イヨト 二日

5 / 8

Boundary and Orientation

Definition

Given a region R in \mathbb{R}^n , the **boundary** of R, denoted ∂R , is the collection of all points that are adjacent to both R and the complement of R.

Definition

Given a region R in the plane ∂R is a collection of curves. The **positive orientation** on ∂R is a choice of direction on each curve so that the region is always on your left as you move along any curve in the given direction.

(4 間) トイヨト イヨト

Green's theorem holds for regions with multiple boundary curves

イロト イポト イヨト イヨト

Э

Green's theorem holds for regions with multiple boundary curves **Example:**Let C be the positively oriented boundary of the annular region between the circle of radius 1 and the circle of radius 2. Evaluate

$$\oint_C (4x^2 - y^3)dx + (x^3 + y^3)dy$$

→ Ξ →

Green's Theorem: Even when it fails it wins.

Example: Evaluate the following integral where *C* is the positively oriented ellipse $x^2 + 4y^2 = 4$.

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

Ryan Blair (U Penn)

8 / 8