Math 240: Double Integrals in Polar Coordinates and Green's Theorem

Ryan Blair

University of Pennsylvania
Friday January 23, 2012

Outline

(1) Today's Goals

(2) Review Problem

(3) Green's Theorem

Today's Goals

(1) Review the calculation of double integrals in polar coordinates.
(2) Review Green's Theorem.

Review Problem

Example For the region R bounded by $y=x, x+y=4$ and $x=0$ evaluate

$$
\iint_{R} x+1 d A
$$

Evaluation of Double Integrals in Polar Coordinates

Theorem

Let f be continuous on a region R. If R is Type Pl , then

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r, \theta) r d r d \theta
$$

If R is Type PII, then

$$
\iint_{R} f(r, \theta) d A=\int_{a}^{b} \int_{h_{1}(r)}^{h_{2}(r)} f(r, \theta) r d \theta d r
$$

Change of Coordinates

If a region in the plane can be describe in polar coordinates as

$$
0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \quad \alpha \leq \theta \leq \beta
$$

then we have the following conversion formula

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Change of Coordinates

If a region in the plane can be describe in polar coordinates as

$$
0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \quad \alpha \leq \theta \leq \beta
$$

then we have the following conversion formula

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Example Evaluate

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

Green's Theorem

Theorem (Green's Theorem)
Suppose C is a piecewise smooth simple closed curve bounding a region R. If $P, Q, \frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A,
$$

where C is oriented counterclockwise.

