Math 240: Independence of Path and Double Integrals

Ryan Blair
University of Pennsylvania

Friday January 20, 2012

Outline

(1) Today's Goals

(2) Path Independence

(3) Double Integrals

Today's Goals

(1) Understand and apply the tests for path independence.
(2) Be able to evaluate of double integrals.

Exact differentials and The Fundamental Theorem of Line

 Integrals
Definition

The differential of a function of two variables $\phi(x, y)$ is

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y
$$

$P(x, y) d x+Q(x, y) d y$ is an exact differential if there exists a function $\phi(x, y)$ such that

$$
d \phi=P(x, y) d x+Q(x, y) d y
$$

The Fundamental Theorem of Line Integrals

Theorem

(Fundamental theorem of Line integrals) Suppose there exists a function $\phi(x, y)$ such that $d \phi=P(x, y) d x+Q(x, y) d y$ and A and B are the endpoints of the path C. Then

$$
\int_{C} P d x+Q d y=\phi(B)-\phi(A)
$$

Test for path independence in 2D

Theorem

Let P and Q have continuous first partial derivatives in an open simply connected region. Then $\int_{C} P d x+Q d y$ is independent of path C if and only if

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

for all (x, y) in the region.

Test for path independence in 3D

Theorem
Let P, Q and R have continuous first partial derivatives in an open simply connected region of space. Then $\int_{C} P d x+Q d y+R d z$ is independent of path C if and only if

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \text { and } \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

for all (x, y, z) in the region.

Intuition of double integrals in the plane

Suppose we want to find the volume of an object with a flat base in the shape of the region R in the plane.

Intuition of double integrals in the plane

Suppose we want to find the volume of an object with a flat base in the shape of the region R in the plane.

Additionally, the sides of the object are vertical and the top of the object is the graph of the function $G(x, y)$.

Intuition of double integrals in the plane

Suppose we want to find the volume of an object with a flat base in the shape of the region R in the plane.

Additionally, the sides of the object are vertical and the top of the object is the graph of the function $G(x, y)$.

Then the volume of the object is given by

$$
\iint_{R} G(x, y) d A
$$

Where we are integrating with respect to the area of R.

Regions

Definition

A Type I region is given by the following formula

$$
a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)
$$

Definition

A Type II region is given by the following formula

$$
c \leq y \leq d, h_{1}(x) \leq y \leq h_{2}(x)
$$

Evaluation of Double Integrals

Theorem

Let f be continuous on a region R. If R is Type I, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

If R is Type II, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example For the region R given by $0 \leq x \leq 2, x^{2} \leq y \leq 4$ evaluate

$$
\iint_{R} x e^{y^{2}} d A
$$

