Math 240: Div, Curl and Line Integrals

Ryan Blair

University of Pennsylvania

Friday January 13, 2012

Ryan Blair (U Penn)

Math 240: Div, Curl and Line Integrals

Friday January 13, 2012

4 A

→ Ξ →

590

1 / 11

Ξ

Ryan Blair (U Penn)

Math 240: Div, Curl and Line Integrals

Friday January 13, 2012

Ξ

590

2 / 11

◆ロト ◆聞ト ◆国ト ◆国ト

Review for Last Time

- Reviewed the definition of vector valued functions and their derivatives.
- Reviewed the definition of and the calculation of partial derivatives.

3

3 / 11

Image: A matrix

Review

Partial Derivative Example

Find
$$\frac{\partial w}{\partial x}$$
 if $w = y^{\ln(x)} \cos(xz)$.

Ryan Blair (U Penn)

Math 240: Div, Curl and Line Integrals

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ Friday January 13, 2012 ୬ < ୧ 4 / 11

- Define and calculate del, grad, curl and div.
- Review line integrals.

3

5 / 11

イロト イポト イヨト イヨト

Measuring Vector Fields

Definition

A 3-dimensional vector field is a map from \mathbb{R}^3 to \mathbb{R}^3 denoted by

$$F(x, y, z) = \langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$$

where f(x, y, z), g(x, y, z) and h(x, y, z) and scalar valued functions.

3

Measuring Vector Fields

Definition

A 3-dimensional vector field is a map from \mathbb{R}^3 to \mathbb{R}^3 denoted by

$$F(x, y, z) = < f(x, y, z), g(x, y, z), h(x, y, z) >$$

where f(x, y, z), g(x, y, z) and h(x, y, z) and scalar valued functions.

Similarly, a 2-dimensional vector field is of the form $F(x, y) = \langle f(x, y), g(x, y) \rangle$.

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^2 or \mathbb{R}^3 into \mathbb{R} .

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^2 or \mathbb{R}^3 into \mathbb{R} . The differential operator **del** is given by

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^2 or \mathbb{R}^3 into \mathbb{R} . The differential operator **del** is given by

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Given a scalar function f(x, y, z) we can form the **gradient of f** using del.

$$grad(f) = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

7 / 11

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^2 or \mathbb{R}^3 into \mathbb{R} . The differential operator **del** is given by

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Given a scalar function f(x, y, z) we can form the **gradient of f** using del.

$$grad(f) = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

 ∇f points in the direction of greatest change of f.

.

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^2 or \mathbb{R}^3 into \mathbb{R} . The differential operator **del** is given by

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Given a scalar function f(x, y, z) we can form the **gradient of f** using del.

$$grad(f) = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

 ∇f points in the direction of greatest change of f. **Example:** Guess the gradient of f(x, y, z) = xyz at (1, 1, 1) by interpreting the function as volume of a box.

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

イロト イポト イヨト イヨト 二日

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

Definition

The **divergence** of a vector field $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is given by the scalar function

$$div(F) = \nabla \cdot F = \frac{\partial P}{\partial x}\mathbf{i} + \frac{\partial Q}{\partial y}\mathbf{j} + \frac{\partial R}{\partial z}\mathbf{k}$$

→ Ξ →

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

Definition

The **divergence** of a vector field $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is given by the scalar function

$$div(F) = \nabla \cdot F = \frac{\partial P}{\partial x}\mathbf{i} + \frac{\partial Q}{\partial y}\mathbf{j} + \frac{\partial R}{\partial z}\mathbf{k}$$

Divergence measures the tendency of a vector field to expand or contract.

8 / 11

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Motivation: Given a vector field we want to make quantitative the notion of rotation.

イロト イポト イヨト イヨト

3

590

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is the vector field

$$curl(F) = \nabla \times F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

3

9 / 11

イロト イポト イヨト イヨト

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is the vector field

$$curl(F) = \nabla \times F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

The magnitude of Curl is the intensity of the rotation about a point. The direction of Curl is the axis of maximal rotation about a point.

9 / 11

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Curl in Dimension 2

Question: What is curl in dimension 2?

Ryan Blair (U Penn)

Math 240: Div, Curl and Line Integrals

Friday January 13, 2012

Curl in Dimension 2

Question: What is curl in dimension 2?

Theorem (Green's Theorem)

Suppose C is a piecewise smooth simple closed curve bounding a region R. If P, Q, $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then $\oint_C Pdx + Qdy = \int \int_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA,$

where C is oriented counterclockwise.

Domain and Range

It is important to note

- grad(scalar function) = vector field
- ø div(vector field) = scalar function
- surl(vector field) = vector field

글 에 에 글 어

3

Domain and Range

It is important to note

- grad(scalar function) = vector field
- ø div(vector field) = scalar function
- surl(vector field) = vector field

Homework: If F is a 3-dimensional vector field show

div(curl(F)) = 0