Math 240: Div, Curl and Line Integrals

Ryan Blair

University of Pennsylvania

Friday January 13, 2012

Outline

(1) Review

(2) Today's Goals

(3) Del, Div, Curl, Grad

Review for Last Time

(1) Reviewed the definition of vector valued functions and their derivatives.
(2) Reviewed the definition of and the calculation of partial derivatives.

Partial Derivative Example

Find $\frac{\partial w}{\partial x}$ if $w=y^{\ln (x)} \cos (x z)$.

Today's Goals

(3) Define and calculate del, grad, curl and div.
(2) Review line integrals.

Measuring Vector Fields

Definition

A 3-dimensional vector field is a map from \mathbb{R}^{3} to \mathbb{R}^{3} denoted by

$$
F(x, y, z)=<f(x, y, z), g(x, y, z), h(x, y, z)>
$$

where $f(x, y, z), g(x, y, z)$ and $h(x, y, z)$ and scalar valued functions.

Measuring Vector Fields

Definition

A 3-dimensional vector field is a map from \mathbb{R}^{3} to \mathbb{R}^{3} denoted by

$$
F(x, y, z)=<f(x, y, z), g(x, y, z), h(x, y, z)>
$$

where $f(x, y, z), g(x, y, z)$ and $h(x, y, z)$ and scalar valued functions.
Similarly, a 2-dimensional vector field is of the form $F(x, y)=<f(x, y), g(x, y)>$.

Del and Grad

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{R}.

Del and Grad

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{R}.
The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Del and Grad

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{R}.
The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Del and Grad

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{R}.
The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

∇f points in the direction of greatest change of f.

Del and Grad

Motivation: We want an alternative notion of derivative of a function from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{R}.
The differential operator del is given by

$$
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Given a scalar function $f(x, y, z)$ we can form the gradient of \mathbf{f} using del.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

∇f points in the direction of greatest change of f. Example: Guess the gradient of $f(x, y, z)=x y z$ at $(1,1,1)$ by interpreting the function as volume of a box.

Div

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

Div

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

Definition

The divergence of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is given by the scalar function

$$
\operatorname{div}(F)=\nabla \cdot F=\frac{\partial P}{\partial x} \mathbf{i}+\frac{\partial Q}{\partial y} \mathbf{j}+\frac{\partial R}{\partial z} \mathbf{k}
$$

Div

Motivation: Given a vector field we want to make quantitative the notion of expansion and contraction.

Definition

The divergence of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is given by the scalar function

$$
\operatorname{div}(F)=\nabla \cdot F=\frac{\partial P}{\partial x} \mathbf{i}+\frac{\partial Q}{\partial y} \mathbf{j}+\frac{\partial R}{\partial z} \mathbf{k}
$$

Divergence measures the tendency of a vector field to expand or contract.

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

The magnitude of Curl is the intensity of the rotation about a point. The direction of Curl is the axis of maximal rotation about a point.

Curl in Dimension 2

Question: What is curl in dimension 2?

Curl in Dimension 2

Question: What is curl in dimension 2?

Theorem (Green's Theorem)

Suppose C is a piecewise smooth simple closed curve bounding a region R. If $P, Q, \frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are continuous on R, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A,
$$

where C is oriented counterclockwise.

Domain and Range

It is important to note
(1) $\operatorname{grad}($ scalar function $)=$ vector field
(2) $\operatorname{div}($ vector field $)=$ scalar function
(3) curl(vector field) $=$ vector field

Domain and Range

It is important to note
(1) $\operatorname{grad}($ scalar function $)=$ vector field
(2) $\operatorname{div}($ vector field $)=$ scalar function
(3) curl(vector field) $=$ vector field

Homework: If F is a 3-dimensional vector field show

$$
\operatorname{div}(\operatorname{curl}(F))=0
$$

