Math 240: Line Integrals

Ryan Blair

University of Pennsylvania

Friday Sept. 7, 2012

Outline

(1) Review

(2) Today's Goals

(3) Line Integrals

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Curl

Motivation: Given a vector field we want to make quantitative the notion of rotation.

Definition

The curl of a vector field $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is the vector field

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

The magnitude of Curl is the intensity of the rotation about a point. The direction of Curl is the axis of maximal rotation about a point.

Domain and Range

It is important to note
(1) $\operatorname{grad}($ scalar function) $=$ vector field
(2) $\operatorname{div}($ vector field $)=$ scalar function
(3) curl(vector field) $=$ vector field

Domain and Range

It is important to note
(1) $\operatorname{grad}($ scalar function $)=$ vector field
(2) $\operatorname{div}($ vector field $)=$ scalar function
(3) curl(vector field) $=$ vector field

Homework: If F is a 3-dimensional vector field show

$$
\operatorname{div}(\operatorname{curl}(F))=0
$$

Today's Goals

(1) Be able to evaluate line integrals.
(2) Be able to apply Green's theorem.

Intuition of line integrals in the plane

Suppose we want to build a fence along a path \mathbf{p} in the plane.

Intuition of line integrals in the plane

Suppose we want to build a fence along a path \mathbf{p} in the plane.
Additionally, suppose the height of the fence at any point (x, y) is dictated by the function $f(x, y)$.

Intuition of line integrals in the plane

Suppose we want to build a fence along a path \mathbf{p} in the plane.
Additionally, suppose the height of the fence at any point (x, y) is dictated by the function $f(x, y)$.

Then the total area of the fence is given by

$$
\int_{\mathbf{p}} f d s
$$

Definition

The scalar line integral of f along the differentiable path
$\mathbf{p}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{a}^{b} f(\mathbf{p}(t))\left\|\mathbf{p}^{\prime}(t)\right\| d t
$$

We denote this integral by $\int_{\mathbf{p}} f d s$.

Definition

The scalar line integral of f along the differentiable path
$\mathbf{p}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{a}^{b} f(\mathbf{p}(t))\left\|\mathbf{p}^{\prime}(t)\right\| d t
$$

We denote this integral by $\int_{\mathbf{p}} f d s$.
Other scalar line integral formulas for $\mathbf{p}=\langle x(t), y(t), \ldots>$:

$$
\begin{aligned}
\int_{\mathbf{p}} f d x & =\int_{a}^{b} f(\mathbf{p}(t)) x^{\prime}(t) d t \\
\int_{\mathbf{p}} f d y & =\int_{a}^{b} f(\mathbf{p}(t)) y^{\prime}(t) d t
\end{aligned}
$$

Definition

The vector line integral of a vector field \mathbf{F} along the differentiable path $\mathbf{p}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{\mathbf{p}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{p}(t)) \cdot \mathbf{p}^{\prime}(t) d t .
$$

Definition

The vector line integral of a vector field \mathbf{F} along the differentiable path $\mathbf{p}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{\mathbf{p}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{p}(t)) \cdot \mathbf{p}^{\prime}(t) d t
$$

If \mathbf{F} is a force field, then this integral measures the work done by \mathbf{F} on a particle moving along \mathbf{p}.

Green's Theorem

Theorem (Green's Theorem)

Let D be a closed, bounded region in \mathbb{R}^{2} with boundary $C=\partial D$. Orient the curves of C so that D is on the left as one traverses C. Let $F(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a vector field such that M, N, $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on D, then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

